Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Controlling neutron orbital angular momentum

Abstract

The quantized orbital angular momentum (OAM) of photons1 offers an additional degree of freedom and topological protection from noise. Photonic OAM states have therefore been exploited in various applications2,3 ranging from studies of quantum entanglement and quantum information science4,5,6,7 to imaging8,9,10,11,12. The OAM states of electron beams13,14,15 have been shown to be similarly useful, for example in rotating nanoparticles and determining the chirality of crystals16,17,18,19. However, although neutrons—as massive, penetrating and neutral particles—are important in materials characterization, quantum information and studies of the foundations of quantum mechanics, OAM control of neutrons has yet to be achieved. Here, we demonstrate OAM control of neutrons using macroscopic spiral phase plates that apply a ‘twist’ to an input neutron beam. The twisted neutron beams are analysed with neutron interferometry. Our techniques, applied to spatially incoherent beams, demonstrate both the addition of quantum angular momenta along the direction of propagation, effected by multiple spiral phase plates, and the conservation of topological charge with respect to uniform phase fluctuations. Neutron-based studies of quantum information science20,21, the foundations of quantum mechanics22,23, and scattering and imaging24 of magnetic, superconducting and chiral materials have until now been limited to three degrees of freedom: spin, path and energy. The optimization of OAM control, leading to well defined values of OAM, would provide an additional quantized degree of freedom for such studies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Schematic diagram of the neutron interferometer.
Figure 2: OAM interferograms.
Figure 3: Addition of angular momenta along the direction of propagation accomplished by two spiral phase plates.
Figure 4: Rotational invariance.

References

  1. 1

    Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011)

    CAS  Article  Google Scholar 

  3. 3

    Torres, J. P. & Torner, L. Twisted Photons: Applications of Light with Orbital Angular Momentum (Wiley-VCH, 2011)

    Book  Google Scholar 

  4. 4

    Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Vallone, G. et al. Free-space quantum key distribution by rotation-invariant twisted photons. Phys. Rev. Lett. 113, 060503 (2014)

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. 6

    Yu, S. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt. Express 23, 3075 (2015)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. 7

    Cardano, F. et al. Quantum walks and wavepacket dynamics on a lattice with twisted photons. Sci. Adv. 1, e1500087 (2015)

    ADS  PubMed  PubMed Central  Article  Google Scholar 

  8. 8

    Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Bahrdt, J. et al. First observation of photons carrying orbital angular momentum in undulator radiation. Phys. Rev. Lett. 111, 034801 (2013)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. 10

    Takahashi, Y. et al. Bragg x-ray ptychography of a silicon crystal: visualization of the dislocation strain field and the production of a vortex beam. Phys. Rev. B 87, 121201 (2013)

    ADS  Article  CAS  Google Scholar 

  11. 11

    Gariepy, G. et al. Creating high-harmonic beams with controlled orbital angular momentum. Phys. Rev. Lett. 113, 153901 (2014)

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  12. 12

    Fischer, P. X-ray imaging of magnetic structures. IEEE Trans. Magn. 51, 0800131 (2014)

    Google Scholar 

  13. 13

    Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15

    McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Schattschneider, P., Löffler, S., Stöger-Pollach, M. & Verbeeck, J. Is magnetic chiral dichroism feasible with electron vortices? Ultramicroscopy 136, 81–85 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. 17

    Rusz, J., Bhowmick, S., Eriksson, M. & Karlsson, N. Scattering of electron vortex beams on a magnetic crystal: towards atomic-resolution magnetic measurements. Phys. Rev. B 89, 134428 (2014)

    ADS  Article  CAS  Google Scholar 

  18. 18

    Juchtmans, R., Béché, A., Abakumov, A., Batuk, M. & Verbeeck, J. Using electron vortex beams to determine chirality of crystals in transmission electron microscopy. Phys. Rev. B 91, 094112 (2015)

    ADS  Article  CAS  Google Scholar 

  19. 19

    Shiloh, R. et al. Unveiling the orbital angular momentum and acceleration of electron beams. Phys. Rev. Lett. 114, 096102 (2015)

    ADS  PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. 20

    Pushin, D. A., Huber, M. G., Arif, M. & Cory, D. G. Experimental realization of decoherence-free subspace in neutron interferometry. Phys. Rev. Lett. 107, 150401 (2011)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Wood, C. J. et al. Quantum correlations in a noisy neutron interferometer. Phys. Rev. A 90, 032315 (2014)

    ADS  Article  CAS  Google Scholar 

  22. 22

    Klepp, J., Sponar, S. & Hasegawa, Y. Fundamental phenomena of quantum mechanics explored with neutron interferometers. Prog. Theor. Exp. Phys. 2014, 082A01 (2014)

    Article  Google Scholar 

  23. 23

    Rauch, H. & Werner, S. A. Neutron Interferometry: Lessons in Experimental Quantum Mechanics, Wave-Particle Duality, and Entanglement 2nd edn, Vol. 12 (Oxford Univ. Press, 2015)

    MATH  Book  Google Scholar 

  24. 24

    Pfeiffer, F. in Neutron Imaging Applications: A Reference for the Imaging Community (eds Anderson, I. S. et al.) Ch. 8 (Springer, 2009)

    Google Scholar 

  25. 25

    Peele, A. G. et al. X-ray phase vortices: theory and experiment. J. Opt. Soc. Am. A 21, 1575–1584 (2004)

    ADS  Article  Google Scholar 

  26. 26

    Pushin, D. A., Arif, M., Huber, M. G. & Cory, D. G. Measurements of the vertical coherence length in neutron interferometry. Phys. Rev. Lett. 100, 250404 (2008)

    ADS  CAS  PubMed  Article  Google Scholar 

  27. 27

    Granada, J. Slow neutron total cross-section of Al6061 at low temperatures. J. Nucl. Mater. 277, 346–350 (2000)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Pushin, D. A., Cory, D. G., Arif, M., Jacobson, D. L. & Huber, M. G. Reciprocal space approaches to neutron imaging. Appl. Phys. Lett. 90, 224104 (2007)

    ADS  Article  CAS  Google Scholar 

  29. 29

    Pushin, D. A. et al. Neutron interferometry at the National Institute of Standards and Technology. Adv. High Energy Phys. 2015, 687480 (2015)

    Article  CAS  Google Scholar 

  30. 30

    Dietze, M., Felber, J., Raum, K. & Rausch, C. Intensified CCDs as position sensitive neutron detectors. Nucl. Instrum. Meth. A 377, 320–324 (1996)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Arif, M., Brown, D. E., Greene, G. L., Clothier, R. & Littrell, K. Multistage position-stabilized vibration isolation system for neutron interferometry. Proc. SPIE Int. Soc. Opt. Eng. 2264, 20–26 (1994)

    ADS  Google Scholar 

  32. 32

    Hasegawa, Y., Loidl, R., Badurek, G., Baron, M. & Rauch, H. Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45–48 (2003)

    ADS  CAS  PubMed  MATH  Article  PubMed Central  Google Scholar 

  33. 33

    Bartosik, H. et al. Experimental test of quantum contextuality in neutron interferometry. Phys. Rev. Lett. 103, 040403 (2009)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Sponar, S., Klepp, J., Zeiner, C., Badurek, G. & Hasegawa, Y. Violation of a Bell-like inequality for spin-energy entanglement in neutron polarimetry. Phys. Lett. A 374, 431–434 (2010)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Hasegawa, Y. et al. Entanglement between degrees of freedom of single neutrons. Nucl. Instrum. Methods Phys. A 611, 310–313 (2009)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Hasegawa, Y. et al. Engineering of triply entangled states in a single-neutron system. Phys. Rev. A 81, 032121 (2010)

    ADS  Article  CAS  Google Scholar 

  37. 37

    Sponar, S. et al. High-efficiency manipulations of triply entangled states in neutron polarimetry. New J. Phys. 14, 53032 (2012)

    Google Scholar 

  38. 38

    Sponar, S. et al. Triple entanglement in neutron interferometric and polarimetric experiments. J. Phys. G 340, 012044 (2012)

    Google Scholar 

  39. 39

    Pfeiffer, F. et al. Neutron phase imaging and tomography. Phys. Rev. Lett. 96, 215505 (2006)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40

    Strobl, M. et al. Neutron dark-field tomography. Phys. Rev. Lett. 101, 123902 (2008)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41

    Kardjilov, N. et al. Three-dimensional imaging of magnetic fields with polarized neutrons. Nature Phys. 4, 399–403 (2008)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Grünzweig, C. et al. Bulk magnetic domain structures visualized by neutron dark-field imaging. Appl. Phys. Lett. 93, 112504 (2008)

    ADS  Article  CAS  Google Scholar 

  43. 43

    Manke, I. et al. Three-dimensional imaging of magnetic domains. Nature Commun. 1, 125 (2010)

    ADS  CAS  Article  Google Scholar 

  44. 44

    Kardjilov, N., Manke, I., Hilger, A., Strobl, M. & Banhart, J. Neutron imaging in materials science. Mater. Today 14, 248–256 (2011)

    Article  Google Scholar 

  45. 45

    Treimer, W. Radiography and tomography with polarized neutrons. J. Magn. Magn. Mater. 350, 188–198 (2014)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Liu, D. et al. Demonstration of achromatic cold-neutron microscope utilizing axisymmetric focusing mirrors. Appl. Phys. Lett. 102, 183508 (2013)

    ADS  Article  CAS  Google Scholar 

  47. 47

    Liu, D. et al. Demonstration of a novel focusing small-angle neutron scattering instrument equipped with axisymmetric mirrors. Nature Commun. 4, 2556 (2013)

    ADS  Article  CAS  Google Scholar 

  48. 48

    Verbeeck, J. et al. Atomic scale electron vortices for nanoresearch. Appl. Phys. Lett. 99, 203109 (2011)

    ADS  Article  CAS  Google Scholar 

  49. 49

    Muhlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009)

    ADS  CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

Financial support provided by the NSERC ‘Create’ and ‘Discovery’ programmes, CERC and the NIST Quantum Information Program is acknowledged. We appreciate discussions with B. McMorran, D. Sarenac, S. Werner and K. Wright.

Author information

Affiliations

Authors

Contributions

C.W.C. and D.A.P. conceived the idea of implementing OAM for neutron beams. D.A.P. conceived the idea of using the spiral phase plate and neutron interferometer for OAM implementation, and designed and built the experimental setup. M.A., M.G.H. and D.A.P. conducted the neutron interferometer experiments. R.B., C.W.C., D.G.C. and D.A.P. led the analysis and wrote the manuscript, with M.A. and M.G.H. contributing substantially.

Corresponding author

Correspondence to Dmitry A. Pushin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Raw data.

Typical images of raw neutron count data obtained over about 80 contiguous hours of data collection with the 2D imaging detector (see Fig. 1). False-colour representation of neutron counts per pixel as indicated by scale on image. On the left is an image of an SPP with L = 0 that is equivalent to a uniform phase plate; on the right is an image of the L = 3 compound SPP discussed in Fig. 3. The horizontal and vertical positions on the 2D neutron detector are shown in millimetres.

Extended Data Figure 2 Data processing.

Illustrations of steps taken to convert raw images collected on the 2D detector to the images shown in Figs 2, 3, 4. a, Raw data. b, Same data, passed through 2D averaging filter with averaging taken over a 10 pixel × 10 pixel square. c, Filtered data normalized to maximum value of intensity in b. The horizontal and vertical positions on the 2D neutron detector are shown in millimetres.

Extended Data Figure 3 Noise distribution.

Illustrations of steps taken to model effects of shot noise in the raw images collected on the 2D detector and images shown in Figs 2, 3, 4. a, Image of the raw data. b, Poisson noise or square root of each pixel shown in a. c, Noise-to-signal ratio of image in a. The horizontal and vertical positions on the 2D neutron detector are shown in millimetres.

Related audio

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clark, C., Barankov, R., Huber, M. et al. Controlling neutron orbital angular momentum. Nature 525, 504–506 (2015). https://doi.org/10.1038/nature15265

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing