Abstract
Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A comparative study of severe thunderstorm among statistical and ANN methodologies
Scientific Reports Open Access 25 July 2023
-
Periodic orbits in chaotic systems simulated at low precision
Scientific Reports Open Access 14 July 2023
-
Accurate medium-range global weather forecasting with 3D neural networks
Nature Open Access 05 July 2023
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Abbe, C. The physical basis of long-range weather forecasts. Mon. Weath. Rev. 29, 551–561 (1901)
Bjerknes, V. Das Problem der Wettervorhersage betrachtet vom Standpunkt der Mechanik und Physik. Meteorol. Z. 21, 1–7 (1904)
Lazo, J. K., Morss, R. E. & Demuth, J. L. 300 billion served: sources, perceptions, uses, and values of weather forecasts. Bull. Am. Meteorol. Soc. 90, 785–798 (2009)
Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability (Cambridge Univ. Press, 2003) A classic textbook on the fundamentals of modern weather prediction.
Richardson, L. F. Weather Prediction by Numerical Process (Cambridge Univ. Press, 1922) Already in the early 1920s the author proposed numerical algorithms to solve the NWP partial differential equations using a huge staff of humans as computers.
Charney, J. G., Fjoertoft, R. & Neumann, J. v. Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950) The first calculation of a numerical weather prediction on an electronic computer.
Bolin, B. Numerical forecasting with the barotropic model. Tellus 7, 27–49 (1955)
Lynch, P. The origins of computer weather prediction and climate modeling. J. Comput. Phys. 227, 3431–3444 (2008)
Robert, A. J. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteorol. Soc. Jpn 60, 319–324 (1982) This seminal paper presents a numerical method used worldwide since the 1990s to solve the partial differential equations with a significantly longer time step thus greatly enhancing efficiency.
Staniforth, A., Wood, N. & Côté, J. A simple comparison of four physics–dynamics coupling schemes. Mon. Weath. Rev. 130, 3129–3135 (2002)
Williamson, D. L. The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Jpn B 85, 241–269 (2007)
Lorenz, E. N. Reflections on the conception, birth and childhood of numerical weather prediction. Annu. Rev. Earth Planet. Sci. 34, 37–45 (2006)
Flato, G. et al. in Climate Change 2013 (eds Stocker, T. F. et al.) 741–866 (Cambridge Univ. Press, 2013)
Dudhia, J. A history of mesoscale model development. Asia-Pac. J. Atmos. Sci. 50, 121–131 (2014) Reviews the evolution of limited area modelling.
Zhang, Y. Online-coupled meteorology and chemistry models: history, current status, and outlook. Atmos. Chem. Phys. 8, 2895–2932 (2008)
Arakawa, A. Adjustment mechanisms in atmospheric motions. J. Meteorol. Soc. Jpn 75, 155–179 (1997)
Williams, P. D. Modelling climate change: the role of unresolved processes. Phil. Trans. R. Soc. A 363, 2931–2946 (2005)
Grenier, H. & Bretherton, C. S. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Weath. Rev. 129, 357–377 (2001)
Arakawa, A. The cumulus parameterization problem: past, present, and future. J. Clim. 17, 2493–2525 (2004)Reviews the necessity and challenges of parameterizing sub-grid scale physical processes for cumulus clouds.
Stensrud, D. J. Parameterization Schemes, Keys to Understanding Numerical Weather Prediction Models (Cambridge Univ. Press, 2007)
Poincare, H. Science and Method ( T. Nelson, London, 1914)
Thompson, P. D. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus 9, 275–295 (1957)
Lorenz, E. N. Deterministic non-periodical flow. J. Atmos. Sci. 20, 130–141 (1963) One of the most influential papers establishing the fundamentals of chaos theory applied to numerical weather prediction.
Slingo, J. & Palmer, T. N. Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. A 369, 4751–4767 (2011)
Zhang, H. & Pu, Z. Beating the uncertainties: ensemble forecasting and ensemble based data assimilation. Adv. Meteorol. 2010, 432160 (2010)
Epstein, E. S. Stochastic-dynamic prediction. Tellus 21, 739–759 (1969)
Leith, C. E. Theoretical skill of Monte Carlo forecasts. Mon. Weath. Rev. 102, 409–418 (1974)Discusses the estimation of atmospheric forecast uncertainties using a Monte Carlo approach based on an ensemble of perturbed numerical predictions.
Ehrendorfer, M. Predicting the uncertainty of numerical weather forecasts: a review. Meteorol. Z. 6, 147–183 (1997)
Palmer, T. N. Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction. Q. J. R. Meteorol. Soc. 138, 841–861 (2012)
Lions, J. Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles (Dunod-Gauthier-Villars, Paris, 1968)
Lorenc, A. C. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112, 1177–1194 (1986)
Daley, R. Atmospheric Data Analysis (Cambridge Univ. Press, 1991)A comprehensive textbook on data assimilation and its application in atmospheric sciences.
Navon, I. M. in Data Assimilation for Atmospheric, Oceanic and Hydrologic Application (eds Park, S. K. & Xu, L. ) 21–65 (Springer, 2009)
Courtier, P., Thepaut, J.-N. & Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120, 1367–1387 (1994)
Rabier, F., Jaervinen, H., Klinker, E., Mahfouf, J.-F. & Simmons, A. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc. 126, 1143–1170 (2000)
Gauthier, P. & Thepaut, J.-N. Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Weath. Rev. 129, 2089–2102 (2001)
Rawlins, F. et al. The Met Office global four-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. 133, 347–362 (2007)
Kadowaki, T. A 4-dimensional variational assimilation system for the JMA Global Spectrum Model. CAS/JSC WGNE Res. Act. Atmos. Ocea. Modell. 34, 117–118 (2005)
Gauthier, P., Tanguay, M., Laroche, S., Pellerin, S. & Morneau, J. Extension of 3D-Var to 4D-Var: implementation of 4D-Var at the Meteorological Service of Canada. Mon. Weath. Rev. 135, 2339–2354 (2007)
Xu, L., Rosmond, T. & Daley, R. Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus A 57, 546–559 (2005)
Saunders, R. W., Matricardi, M. & Brunel, P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999)
Bauer, P., Moreau, E., Chevallier, F. & O'Keeffe, U. Multiple-scattering microwave radiative transfer for data assimilation applications. Q. J. R. Meteorol. Soc. 132, 1259–1281 (2006)
Buehner, M. Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc. 131, 1013–1043 (2006)
Chapnik, B., Desroziers, G., Rabier, F. & Talagrand, O. Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Q. J. R. Meteorol. Soc. 132, 543–565 (2006)
Janisková, M. & Lopez, P. in Data Assimilation for Atmospheric, Oceanic and Hydrological Applications (eds Park, S. K. & Xu, L. ) 251–286 (Springer, 2013)
Trenberth, K. E. & Fasullo, J. T. Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J. Geophys. Res. 117, D17103 (2012)
Hoskins, B. The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Q. J. R. Meteorol. Soc. 139, 573–584 (2013)
Jung, T., Miller, M. J. & Palmer, T. N. Diagnosing the origin of extended-range forecast errors. Mon. Weath. Rev. 138, 2434–2446 (2010)
Duc, L., Saito, K. & Seko, H. Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus A 65, 18171 (2013)
Rodwell, M. J., Richardson, D. S., Hewson, T. D. & Haiden, T. A new equitable score suitable for verifying precipitation in numerical weather prediction. Q. J. R. Meteorol. Soc. 136, 1344–1363 (2010)
Johnson, C., Bowler, N. & l On the reliability and calibration of ensemble forecasts. Mon. Weath. Rev. 137, 1717–1720 (2009)
Martin, G. M. et al. Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Clim. 23, 5933–5957 (2010)
Rodwell, M. J. & Palmer, T. N. Using numerical weather prediction to assess climate models. Q. J. R. Meteorol. Soc. 133, 129–146 (2007)
Dole, R. et al. The making of an extreme event: putting the pieces together. Bull. Am. Meteorol. Soc. 95, 427–440 (2014)
Ferro, C. A. T. & Stephenson, D. B. Extremal Dependence Indices: improved verification measures for deterministic forecasts of rare binary events. Weather Forecast. 26, 699–713 (2011)
Yu, H., Chen, P., Li, Q. & Tang, B. Current capability of operational numerical models in predicting tropical cyclone intensity in the western North Pacific. Weather Forecast. 38, 353–367 (2013)
Molteni, F., Kucharski, F. & Corti, S. in Predictability of Weather and Climate (eds Palmer, T. & Hagedorn, R. ) 365–390 (Cambridge Univ. Press, 2006)
Lin, H., Brunet, G. & Derome, J. An observed connection between the North Atlantic Oscillation and the Madden-Julian Oscillation. J. Clim. 22, 364–380 (2009)
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S. & DeWitt, D. G. Skill of Real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull. Am. Meteorol. Soc. 93, 631–651 (2012)
Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 244, 581–584 (2001)
Scaife, A. A., Knight, J. R., Vallis, G. K. & Folland, C. K. A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett. 32, L18715 (2005)
Teng, H., Branstator, G. W., Wang, H., Meehl, G. A. & Washington, W. M. Probability of US heat waves affected by a subseasonal planetary wave pattern. Nature Geosci. 6, 1056–1061 (2013)
Frank, W. M. & Roundy, P. E. The relationship between tropical waves and tropical cyclogenesis. Mon. Weath. Rev. 134, 2397–2417 (2006)
Inness, P. M., Slingo, J. M., Woolnough, S. J., Neale, R. B. & Pope, V. D. Organisation of tropical convection in a GCM with varying vertical resolution; implications of the Madden Julian Oscillation. Clim. Dyn. 17, 777–793 (2001)
Koster, R. D. et al. Contribution of land surface initialization to subseasonal forecast skill: first results from the GLACE-2 project. Geophys. Res. Lett. 37, L02402 (2010)
Lin, H. & Brunet, G. The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Weath. Rev. 137, 2250–2262 (2009)
Benoit, R. et al. Toward the use of coupled atmospheric and hydrologic models at regional scale. Mon. Weath. Rev. 128, 1681–1706 (2000)
Zappa, M. et al. Propagation of uncertainty from observing systems and NWP into hydrological models: COST-731 Working Group 2. Atmos. Sci. Lett. 11, 83–91 (2010)
Lauritzen, P. H. & Thuburn, J. Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics. Q. J. R. Meteorol. Soc. 138, 906–918 (2011)
Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C. & Baklanov, A. Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos. Environ. 60, 656–676 (2012)
Cloke, H. et al. Preface, hydrological ensemble prediction systems. Hydrol. Processes 27, 1–4 (2013)
Thorpe, A. J., Bauer, P., Magnusson, L. & Richardson, D. An evaluation of recent performance of ECMWF’s forecasts. ECMWF Newsl. 137, 15–18. (2013)
Magnusson, L. & Källén, E. Factors influencing skill improvements in the ECMWF forecasting system. Mon. Weath. Rev. 141, 3142–3153 (2013)
Holloway, C. E., Woolnough, S. J. & Lister, G. M. S. The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation. J. Atmos. Sci. 70, 1342–1369 (2013)
Hong, S. Y. J. D. Next-generation numerical weather prediction: bridging parameterization, explicit clouds, and large eddies. Bull. Am. Meteorol. Soc. 93, ES6–ES9 (2012)
Jakob, C. Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities, and strategies. Bull. Am. Meteorol. Soc. 91, 869–875 (2010)
Phillips, T. J. et al. Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Am. Meteorol. Soc. 85, 1903–1915 (2004)
Shin, H. H. & Hong, S.-Y. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci. 70, 3248–3261 (2013)
Watson, P. A. G., Christensen, H. M. & Palmer, T. N. Does the ECMWF IFS convection parameterization with stochastic physics correctly reproduce relationships between convection and the large-scale state? J. Atmos. Sci. 72, 236–242 (2015)
Randall, D., Khairoutdinov, M., Arakawa, A. & Grabowski, W. Breaking the cloud parameterization deadlock. Bull. Am. Meteorol. Soc. 84, 1547–1564 (2003)
MacLachlan, C. et al. Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc. http://dx.doi.org/10.1002/qj.2396. (2014)
Molteni, F. et al. The new ECMWF seasonal forecast system (system 4); ECMWF Technical Memoranda no. 656 (ECMWF, Reading, 2011)
Gleckler, P. J. Surface energy balance errors in AGCMs: implications for ocean-atmosphere model coupling. Geophys. Res. Lett. 32, L15708 (2005)
Cardinali, C. in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications Vol. II (eds Park, S. K. & Xu, L. ) 89–110 (Springer, 2013)
Horanyi, A., Cardinali, C., Rennie, M. & Isaksen, L. The assimilation of horizontal line-of-sight wind information into the ECMWF data assimilation and forecasting system. Part I: The assessment of wind impact. Q. J. R. Meteorol. Soc. http://dx.doi.org/10.1002/qj.2430 (2014)
Lorenc, A. C., Bowler, N. E., Clayton, A. M., Pring, S. R. & Fairbairn, D. Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Weath. Rev. 143, 212–229 (2015)
Evensen, G. Data Assimilation: The Ensemble Kalman Filter (Springer, 2007)
Leeuwen, P. J. V. Efficient non-linear data assimilation in geophysical fluid dynamics. Comput. Fluids http://dx.doi.org/doi:10.1016/j.compfluid.2010.11.011 (2011)
Brunet, G. et al. Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Am. Meteorol. Soc. 91, 1397–1406 (2010)
Mollick, E. Establishing Moore's law. IEEE Ann. Hist. Comput. 28, 62–75 (2006)
Shalf, J., Dosanjh, S. & Morrison, J. in High Performance Computing for Computational Science – VECPAR 2010 (eds Palma, J. M. L. M. et al.) 1–25 (Springer, 2011)
Müller, E. H. & Scheichl, R. Massively parallel solvers for elliptic partial differential equations in numerical weather. Q. J. R. Meteorol. Soc. 140, 2608–2624 (2014)
Palem, K. Ten years of building broken chips: the physics and engineering of inexact computing. ACM Trans. Embed. Comput. Syst. (TECS) 12, 87:1–87:23(2013)
Lawrence, B. Data Handling on the Path to Exascale; http://old.ecmwf.int/newsevents/meetings/workshops/2014/Scalability/Presentations/pdfs/Lawrence.pdf (presented at ECMWF Scalability Workshop, Reading, 2013)
Collard, A. D., McNally, A. P., Hilton, F. I., Healy, S. B. & Atkinson, N. C. The use of principal component analysis for the assimilation of high-resolution infrared sounder observations for numerical weather prediction. Q. J. R. Meteorol. Soc. 136, 2038–2050 (2010)
Snik, F. et al. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters. Geophys. Res. Lett. 41, 7351–7358 (2014)
Mahoney, W. P. III & O’Sullivan, J. M. Realizing the potential of vehicle-based observations. Bull. Am. Meteorol. Soc. 94, 1007–1018 (2013)
Hurrell, J. et al. A unified modeling approach to climate system prediction. Bull. Am. Meteorol. Soc. 90, 1819–1832 (2009)
World Meteorological Organization. Seamless Prediction of the Earth System: From Minutes to Months. WMO No. 1156 (World Meteorological Organization, Geneva, 2015)Status and outlook compiled from the most recent science conference of the WMO World Weather Research Programme.
Simmons, A. J. & Hollingsworth, A. Some aspects of the improvement in skill of numerical weather prediction. Q. J. R. Meteorol. Soc. 128, 647–677 (2002) Discusses the historical increase of the weather predictive skill of one day lead-time per decade linked to improvements in data assimilation, models and observing systems.
Acknowledgements
We thank C. Jakob and M. Miller for motivating us to write this paper. We are grateful to E. Källén, F. Rabier and A. Simmons for comments and to L. Magnusson for input and figures.
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015). https://doi.org/10.1038/nature14956
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature14956
This article is cited by
-
Embracing complexity in sepsis
Critical Care (2023)
-
Interpretable weather forecasting for worldwide stations with a unified deep model
Nature Machine Intelligence (2023)
-
A comparative study of severe thunderstorm among statistical and ANN methodologies
Scientific Reports (2023)
-
Operational forecasts of wave-driven water levels and coastal hazards for US Gulf and Atlantic coasts
Communications Earth & Environment (2023)
-
Adaptive bias correction for improved subseasonal forecasting
Nature Communications (2023)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.