Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spawning rings of exceptional points out of Dirac cones


The Dirac cone underlies many unique electronic properties of graphene1 and topological insulators, and its band structure—two conical bands touching at a single point—has also been realized for photons in waveguide arrays2, atoms in optical lattices3, and through accidental degeneracy4,5. Deformation of the Dirac cone often reveals intriguing properties; an example is the quantum Hall effect, where a constant magnetic field breaks the Dirac cone into isolated Landau levels. A seemingly unrelated phenomenon is the exceptional point6,7, also known as the parity–time symmetry breaking point8,9,10,11, where two resonances coincide in both their positions and widths. Exceptional points lead to counter-intuitive phenomena such as loss-induced transparency12, unidirectional transmission or reflection11,13,14, and lasers with reversed pump dependence15 or single-mode operation16,17. Dirac cones and exceptional points are connected: it was theoretically suggested that certain non-Hermitian perturbations can deform a Dirac cone and spawn a ring of exceptional points18,19,20. Here we experimentally demonstrate such an ‘exceptional ring’ in a photonic crystal slab. Angle-resolved reflection measurements of the photonic crystal slab reveal that the peaks of reflectivity follow the conical band structure of a Dirac cone resulting from accidental degeneracy, whereas the complex eigenvalues of the system are deformed into a two-dimensional flat band enclosed by an exceptional ring. This deformation arises from the dissimilar radiation rates of dipole and quadrupole resonances, which play a role analogous to the loss and gain in parity–time symmetric systems. Our results indicate that the radiation existing in any open system can fundamentally alter its physical properties in ways previously expected only in the presence of material loss and gain.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Accidental degeneracy in Hermitian and non-Hermitian photonic crystals.
Figure 2: Experimental reflectivity spectrum and accidental Dirac dispersion.
Figure 3: Experimental demonstration of an exceptional ring.


  1. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

    CAS  Article  ADS  Google Scholar 

  2. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic landau levels in dielectric structures. Nature Photon. 7, 153–158 (2013)

    CAS  Article  ADS  Google Scholar 

  3. Tarruell, L., Greif, D., Uehlinger, T., Jotzu, G. & Esslinger, T. Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice. Nature 483, 302–305 (2012)

    CAS  Article  ADS  Google Scholar 

  4. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Mater. 10, 582–586 (2011)

    CAS  Article  ADS  Google Scholar 

  5. Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photon. 7, 791–795 (2013)

    CAS  Article  ADS  Google Scholar 

  6. Moiseyev, N. Non-Hermitian Quantum Mechanics (Cambridge Univ. Press, 2011)

    Book  Google Scholar 

  7. Rotter, I. A non-Hermitian Hamilton operator and the physics of open quantum systems. J. Phys. A 42, 153001 (2009)

    MathSciNet  Article  ADS  Google Scholar 

  8. Bender, C. M. & Boettcher, S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett. 80, 5243–5246 (1998)

    MathSciNet  CAS  Article  ADS  Google Scholar 

  9. Rüter, C. E. et al. Observation of parity–time symmetry in optics. Nature Phys. 6, 192–195 (2010)

    Article  ADS  Google Scholar 

  10. Chong, Y., Ge, L. & Stone, A. D. PT-symmetry breaking and laser-absorber modes in optical scattering systems. Phys. Rev. Lett. 106, 093902 (2011)

    CAS  Article  ADS  Google Scholar 

  11. Regensburger, A. et al. Parity-time synthetic photonic lattices. Nature 488, 167–171 (2012)

    CAS  Article  ADS  Google Scholar 

  12. Guo, A. et al. Observation of PT-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009)

    CAS  Article  ADS  Google Scholar 

  13. Lin, Z. et al. Unidirectional invisibility induced by PT-symmetric periodic structures. Phys. Rev. Lett. 106, 213901 (2011)

    Article  ADS  Google Scholar 

  14. Peng, B. et al. Parity–time-symmetric whispering-gallery microcavities. Nature Phys. 10, 394–398 (2014)

    CAS  Article  ADS  Google Scholar 

  15. Liertzer, M. et al. Pump-induced exceptional points in lasers. Phys. Rev. Lett. 108, 173901 (2012)

    CAS  Article  ADS  Google Scholar 

  16. Hodaei, H., Miri, M.-A., Heinrich, M., Christodoulides, D. N. & Khajavikhan, M. Parity-time–symmetric microring lasers. Science 346, 975–978 (2014)

    CAS  Article  ADS  Google Scholar 

  17. Feng, L., Wong, Z. J., Ma, R.-M., Wang, Y. & Zhang, X. Single-mode laser by parity-time symmetry breaking. Science 346, 972–975 (2014)

    CAS  Article  ADS  Google Scholar 

  18. Berry, M. Physics of nonhermitian degeneracies. Czech. J. Phys. 54, 1039–1047 (2004)

    CAS  Article  ADS  Google Scholar 

  19. Makris, K., El-Ganainy, R., Christodoulides, D. & Musslimani, Z. H. Beam dynamics in PT symmetric optical lattices. Phys. Rev. Lett. 100, 103904 (2008)

    CAS  Article  ADS  Google Scholar 

  20. Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806 (2011)

    Article  ADS  Google Scholar 

  21. Cao, H. & Wiersig, J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87, 61–111 (2015)

    MathSciNet  Article  ADS  Google Scholar 

  22. Sakoda, K. Proof of the universality of mode symmetries in creating photonic Dirac cones. Opt. Express 20, 25181–25194 (2012)

    Article  ADS  Google Scholar 

  23. Chan, C., Hang, Z. H. & Huang, X. Dirac dispersion in two-dimensional photonic crystals. Adv. Optoelectron. 2012, 313984 (2012)

    Article  Google Scholar 

  24. Lee, J. et al. Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs. Phys. Rev. Lett. 109, 067401 (2012)

    Article  ADS  Google Scholar 

  25. Dembowski, C. et al. Experimental observation of the topological structure of exceptional points. Phys. Rev. Lett. 86, 787–790 (2001)

    CAS  Article  ADS  Google Scholar 

  26. Hsu, C. W., DeLacy, B. G., Johnson, S. G., Joannopoulos, J. D. & Soljacic, M. Theoretical criteria for scattering dark states in nanostructured particles. Nano Lett. 14, 2783–2788 (2014)

    CAS  Article  ADS  Google Scholar 

  27. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013)

    CAS  Article  ADS  Google Scholar 

  28. Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004)

    CAS  Article  ADS  Google Scholar 

  29. Chua, S.-L., Lu, L., Bravo-Abad, J., Joannopoulos, J. D. & Soljačić, M. Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point. Opt. Lett. 39, 2072–2075 (2014)

    CAS  Article  ADS  Google Scholar 

  30. Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological photonics. Nature Photon. 8, 821–829 (2014)

    CAS  Article  ADS  Google Scholar 

Download references


We thank T. Savas for fabrication of the samples, and F. Wang, Y. Yang, N. Rivera, S. Skirlo, O. Miller and S. G. Johnson for discussions. This work was partly supported by the Army Research Office through the Institute for Soldier Nanotechnologies under contract nos W911NF-07-D0004 and W911NF-13-D-0001. B.Z., L.L. and M.S. were partly supported by S3TEC, an Energy Frontier Research Center funded by the US Department of Energy under grant no. DE-SC0001299. L.L. was supported in part by the Materials Research Science and Engineering Center of the National Science Foundation (award no. DMR-1419807). I.K. was supported in part by Marie Curie grant no. 328853-MC-BSiCS.

Author information

Authors and Affiliations



All authors discussed the results and made critical contributions to the work.

Corresponding authors

Correspondence to Bo Zhen or Chia Wei Hsu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary References and Supplementary Figures 1–8. (PDF 9905 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhen, B., Hsu, C., Igarashi, Y. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing