Abstract
Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon–carbon and carbon–heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C−C bond-forming reactions, most notably Negishi, Suzuki–Miyaura, Stille, Kumada and Hiyama couplings1,2. Despite the tremendous advances in C−C fragment couplings, the ability to forge C−O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C–O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(iii) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(iii) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon–oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to ‘switch on’ important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Copper-mediated etherification via aryl radicals generated from triplet states
Nature Synthesis Open Access 25 April 2022
-
Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand
Nature Communications Open Access 14 March 2022
-
Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids
Nature Communications Open Access 04 February 2022
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014)
Netherton, M. R. & Fu, G. C. Nickel-catalyzed cross-couplings of unactivated alkyl halides and pseudohalides with organometallic compounds. Adv. Synth. Catal. 346, 1525–1532 (2004)
Narayanam, J. M. R. & Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 40, 102–113 (2011)
Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013)
Schultz, D. M. & Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 343, 1239176 (2014)
Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008)
Ischay, M. A., Anzovino, M. E., Du, J. & Yoon, T. P. Efficient visible light photocatalysis of [2+2] enone cycloadditions. J. Am. Chem. Soc. 130, 12886–12887 (2008)
Narayanam, J. M. R., Tucker, J. W. & Stephenson, C. R. J. Electron-transfer photoredox catalysis: development of a tin-free reductive dehalogenation reaction. J. Am. Chem. Soc. 131, 8756–8757 (2009)
Pirnot, M. T., Rankic, D. A., Martin, D. B. C. & MacMillan, D. W. C. Photoredox activation for the direct β-arylation of ketones and aldehydes. Science 339, 1593–1596 (2013)
Hopkinson, M. N., Sahoo, B., Li, J.-L. & Glorius, F. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chemistry 20, 3874–3886 (2014)
Osawa, M., Nagai, H. & Akita, M. Photo-activation of Pd-catalyzed Sonogashira coupling using a Ru/bipyridine complex as energy transfer agent. Dalton Trans.827–829 (2007)
Kalyani, D., McMurtrey, K. B., Neufeldt, S. R. & Sanford, M. S. Room-temperature C–H arylation: merger of Pd-catalyzed C–H functionalization and visible-light photocatalysis. J. Am. Chem. Soc. 133, 18566–18569 (2011)
Ye, Y. & Sanford, M. S. Merging visible-light photocatalysis and transition-metal catalysis in the copper-catalyzed trifluoromethylation of boronic acids with CF3I. J. Am. Chem. Soc. 134, 9034–9037 (2012)
Sahoo, B., Hopkinson, M. N. & Glorius, F. Combining gold and photoredox catalysis: visible light-mediated oxy- and aminoarylation of alkenes. J. Am. Chem. Soc. 135, 5505–5508 (2013)
Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014)
Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014)
Matsunaga, P. T., Hillhouse, G. L. & Rheingold, A. L. Oxygen-atom transfer from nitrous oxide to a nickel metallacycle. Synthesis, structure, and reactions of [cyclic] (2,2′-bipyridine)Ni(OCH2CH2CH2CH2). J. Am. Chem. Soc. 115, 2075–2077 (1993)
Matsunaga, P. T., Mavropoulos, J. C. & Hillhouse, G. L. Oxygen-atom transfer from nitrous oxide (N = N = O) to nickel alkyls. Syntheses and reactions of nickel(II) alkoxides. Polyhedron 14, 175–185 (1995)
Han, R. & Hillhouse, G. L. Carbon–oxygen reductive-elimination from nickel(II) oxametallacycles and factors that control formation of ether, aldehyde, alcohol, or ester products. J. Am. Chem. Soc. 119, 8135–8136 (1997)
Camasso, N. M. & Sanford, M. S. Design, synthesis, and carbon-heteroatom coupling reactions of organometallic nickel(IV) complexes. Science 347, 1218–1220 (2013)
Zhou, W., Schultz, J. W., Rath, N. P. & Mirica, L. M. Aromatic methoxylation and hydroxylation by organometallic high-valent nickel complexes. J. Am. Chem. Soc. 137, 7604–7607 (2015)
Macgregor, S. A., Neave, G. W. & Smith, C. Theoretical studies on C–heteroatom bond formation via reductive elimination from group 10 M(PH3)2(CH3)(X) species (X = CH3, NH2, OH, SH) and the determination of metal–X bond strengths using density functional theory. Faraday Discuss. 124, 111–127 (2003)
Torraca, K. E., Huang, X., Parrish, C. A. & Buchwald, S. L. An efficient intermolecular palladium-catalyzed synthesis of aryl ethers. J. Am. Chem. Soc. 123, 10770–10771 (2001)
Wolter, M., Nordmann, G., Job, G. E. & Buchwald, S. L. Copper-catalyzed coupling of aryl iodides with aliphatic alcohols. Org. Lett. 4, 973–976 (2002)
Kataoka, N., Shelby, Q., Stambuli, J. P. & Hartwig, J. F. Air stable, sterically hindered ferrocenyl dialkylphosphines for palladium-catalyzed C–C, C–N, and C–O bond-forming cross-couplings. J. Org. Chem. 67, 5553–5566 (2002)
Mann, G. & Hartwig, J. F. Nickel- vs. palladium-catalyzed synthesis of protected phenols from aryl halides. J. Org. Chem. 62, 5413–5418 (1997)
Amatore, C. & Jutand, A. Rates and mechanism of biphenyl synthesis catalyzed by electrogenerated coordinatively unsaturated nickel complexes. Organometallics 7, 2203–2214 (1988)
Lowry, M. S. et al. Single-layer electroluminescent devices and photoinduced hydrogen production from an ionic iridium(III) complex. Chem. Mater. 17, 5712–5719 (2005)
Klein, A. et al. Halide ligands—more than just σ-donors? A structural and spectroscopic study of homologous organonickel complexes. Inorg. Chem. 47, 11324–11333 (2008)
Durandetti, M., Devaud, M. & Perichon, J. Investigation of the reductive coupling of aryl halides and/or ethylchloroacetate electrocatalyzed by the precursor NiX2(bpy) with X– = Cl–, Br– or MeSO3– and bpy = 2,2′-dipyridyl. New J. Chem. 20, 659–667 (1996)
Acknowledgements
Financial support was provided by the National Institute of General Medical Sciences (R01 GM093213-01) and gifts from Merck, AbbVie and Bristol-Myers Squibb. J.A.T. thanks Bristol-Myers Squibb for a Graduate Fellowship. J.D.C. thanks Marie Curie Actions for an International Outgoing Fellowship. The authors thank Eric R. Welin for assistance in preparing Ni(ii) complexes.
Author information
Authors and Affiliations
Contributions
J.A.T., J.D.C. and V.W.S. performed and analysed experiments. J.A.T., J.D.C., V.W.S. and D.W.C.M. designed experiments to develop this reaction and probe its utility, and also prepared this manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Text and Data, Supplementary Figures 1–11, NMR spectral data for novel compounds and additional references (see Contents for details). (PDF 9586 kb)
Rights and permissions
About this article
Cite this article
Terrett, J., Cuthbertson, J., Shurtleff, V. et al. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 524, 330–334 (2015). https://doi.org/10.1038/nature14875
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature14875
This article is cited by
-
Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling
Nature Synthesis (2023)
-
Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand
Nature Communications (2022)
-
Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids
Nature Communications (2022)
-
N2O revalorization
Nature Chemistry (2022)
-
Copper-mediated etherification via aryl radicals generated from triplet states
Nature Synthesis (2022)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.