Abstract

A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested1,2,3. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts3,4 or in the tidal disruption of a star3. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts5,6,7, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae8,9, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae10.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. The ultra-long gamma-ray burst 111209A: the collapse of a blue supergiant? Astrophys. J. 766, 30 (2013)

  2. 2.

    et al. The ultra-long gamma-ray burst 111209A: II. Prompt to afterglow and afterglow properties. Astrophys. J. 779, 66 (2013)

  3. 3.

    et al. A new population of ultra-long duration gamma-ray bursts. Astrophys. J. 781, 13 (2014)

  4. 4.

    , , & Blue supergiant model for ultra-long gamma-ray bursts with superluminous-supernova-like bump. Astrophys. J. 778, 67 (2013)

  5. 5.

    et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998)

  6. 6.

    et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003)

  7. 7.

    et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003)

  8. 8.

    et al. Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489 (2011)

  9. 9.

    Luminous supernovae. Science 337, 927–932 (2012)

  10. 10.

    , , , & Superluminous supernovae: Ni power versus magnetar radiation. Mon. Not. R. Astron. Soc. 426, L76–L80 (2012)

  11. 11.

    et al. GRB 111209A: Swift detection of a long burst with an optical counterpart. GCN Circ. 12632 (2011)

  12. 12.

    et al. Konus-Wind observation of GRB 111209A. GCN Circ. 12663 (2011)

  13. 13.

    et al. GROND—a 7-channel imager. Publ. Astron. Soc. Pacif. 120, 405–424 (2008)

  14. 14.

    et al. GRB 091024A and the nature of ultra-long gamma-ray bursts. Astrophys. J. 778, 54 (2013)

  15. 15.

    , , , & How long does a burst burst? Astrophys. J. 787, 66 (2014)

  16. 16.

    et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 449, 917–932 (2015)

  17. 17.

    et al. Peculiar Type II supernovae from blue supergiants. Mon. Not. R. Astron. Soc. 415, 372–382 (2011)

  18. 18.

    & The application of Monte Carlo methods to the synthesis of early-time supernovae spectra. Astron. Astrophys. 279, 447–456 (1993)

  19. 19.

    Applications of an improved Monte Carlo code to the synthesis of early-time supernova spectra. Astron. Astrophys. 363, 705–716 (2000)

  20. 20.

    & Supernova light curves powered by young magnetars. Astrophys. J. 717, 245–249 (2010)

  21. 21.

    et al. A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 442, 1018–1020 (2006)

  22. 22.

    , , & Gamma-ray bursts are observed off-axis. Astrophys. J. 799, A3 (2015)

  23. 23.

    A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. Astron. Astrophys. 568, 19 (2014)

  24. 24.

    et al. An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars. Mon. Not. R. Astron. Soc. 443, 67–71 (2014)

  25. 25.

    & Swift 1644+57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc. 419, L1–L5 (2012)

  26. 26.

    et al. The properties of the ‘standard’ type Ic supernova 1994I from spectral models. Mon. Not. R. Astron. Soc. 369, 1939–1948 (2006)

  27. 27.

    Super-luminous Type Ic supernovae: catching a magnetar by the tail. Astrophys. J. 770, 128 (2013)

  28. 28.

    et al. PS1–10bzj: a fast, hydrogen-poor superluminous supernova in a metal-poor host galaxy. Astrophys. J. 771, 97 (2013)

  29. 29.

    et al. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. Astrophys. J. 797, 24 (2014)

  30. 30.

    & WISeREP — an interactive supernova data repository. Publ. Astron. Soc. Pacif. 124, 668–681 (2012)

  31. 31.

    in Astronomical Data Analysis Software and Systems II (eds , & ) 173 (ASP Conf. Ser. 52, 1993)

  32. 32.

    et al. The 2175 Å feature in a gamma-ray burst afterglow at redshift 2.45. Astrophys. J. 685, 376–383 (2008)

  33. 33.

    et al. First results of GROND. AIP Conf. Proc. 1 000, 227–231 (2008)

  34. 34.

    SDSS. (accessed 21 October 2014)

  35. 35.

    Swift: catching gamma-ray bursts on the fly. (2014)

  36. 36.

    et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008)

  37. 37.

    , & Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)

  38. 38.

    et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011)

  39. 39.

    et al. GRB hosts through cosmic time: an emission-line survey of 96 gamma-ray burst selected galaxies between 0.1 < z < 3.6. Astron. Astrophys. (in the press); preprint at (2015)

  40. 40.

    & Le PHARE: Photometric analysis for redshift estimate. (2014)

  41. 41.

    Type I supernovae. I — Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982)

  42. 42.

    et al. The broad-lined Type Ic supernova 2003jd. Mon. Not. R. Astron. Soc. 383, 1485–1500 (2008)

  43. 43.

    et al. The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe. Mon. Not. R. Astron. Soc. 432, 2463–2473 (2013)

  44. 44.

    , & Nucleosynthesis in the outflow from gamma-ray burst accretion disks. Astrophys. J. 643, 1057–1064 (2006)

  45. 45.

    , , & The fate of fallback matter around newly born compact objects. Astrophys. J. 781, 119 (2014)

  46. 46.

    , & The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)

Download references

Acknowledgements

We thank R. Lunnan and E. Berger for providing the spectrum of PS1-10bzj in digital form, and A. Levan for the HST grism spectra of GRB 111209A. J.G., R.D. and D.A.K. acknowledge support by the DFG cluster of excellence “Origin and Structure of the Universe” (http://www.universe-cluster.de). P.S., J.F.G. and M.T. acknowledge support through the Sofja Kovalevskaja award to P.S. from the Alexander von Humboldt Foundation, Germany. C.D. acknowledges support through EXTraS, funded from the European Union’s Seventh Framework Programme for research, technological development and demonstration. S.K., D.A.K. and A.N.G. acknowledge support by DFG. S. Schmidl acknowledges support by the Thüringer Ministerium für Bildung, Wissenschaft und Kultur. F.O.E. acknowledges support from FONDECYT. S.T. is supported by DFG. R.F. acknowledges support by Czech MEYS. Part of the funding for GROND (both hardware as well as personnel) was generously granted from the Leibniz-Prize to G. Hasinger. DARK is funded by the DNRF.

Author information

Affiliations

  1. Max-Planck-Institut für Extraterrestrische Physik, Giessenbachstrasse 1, 85748 Garching, Germany

    • Jochen Greiner
    • , D. Alexander Kann
    • , Fabian Knust
    • , Jan Bolmer
    • , Corentin Delvaux
    • , Roland Diehl
    • , Jonathan Elliott
    • , John F. Graham
    • , Sandra Savaglio
    • , Patricia Schady
    • , Tassilo Schweyer
    • , Vladimir Sudilovsky
    • , Mohit Tanga
    • , Hendrik van Eerten
    •  & Karla Varela
  2. Excellence Cluster Universe, Technische Universität München, Boltzmannstrasse 2, 85748 Garching, Germany

    • Jochen Greiner
    •  & D. Alexander Kann
  3. Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Browlow Hill, Liverpool L3 5RF, UK

    • Paolo A. Mazzali
    • , Simon Prentice
    • , Chris Ashall
    •  & Shiho Kobayashi
  4. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany

    • Paolo A. Mazzali
    •  & Stefan Taubenberger
  5. Thüringer Landessternwarte Tautenburg, Sternwarte 5, 07778 Tautenburg, Germany

    • D. Alexander Kann
    • , Andrea Rossi
    • , Sylvio Klose
    • , Ana Nicuesa Guelbenzu
    •  & Sebastian Schmidl
  6. European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19, Chile

    • Thomas Krühler
  7. INAF, Institute of Space Astrophysics and Cosmic Physics, via P. Gobetti 101, 40129 Bologna, Italy

    • Elena Pian
    •  & Andrea Rossi
  8. Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy

    • Elena Pian
  9. Departamento de Ciencias Fisicas, Universidad Andres Bello, Avenida Republica 252, Santiago, Chile

    • Felipe Olivares E.
  10. European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching, Germany

    • Stefan Taubenberger
  11. American River College, Physics and Astronomy Department, 4700 College Oak Drive, Sacramento, California 95841, USA

    • Paulo M. J. Afonso
  12. Technische Universität München, Physik Department, James-Franck-Strasse, 85748 Garching, Germany

    • Jan Bolmer
    •  & Tassilo Schweyer
  13. Astrophysics Data System, Harvard–Smithonian Center for Astrophysics, Garden Street 60, Cambridge, Massachusetts 02138, USA

    • Jonathan Elliott
    •  & Vladimir Sudilovsky
  14. Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2, Czech Republic

    • Robert Filgas
  15. DARK Cosmology Center, Niels-Bohr-Institut, University of Copenhagen, Juliane Maries Vej 30, 2100 København, Denmark

    • Johan P. U. Fynbo
    •  & Giorgos Leloudas
  16. Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel

    • Giorgos Leloudas
  17. Universita della Calabria, 87036 Arcavacata di Rende, via P. Bucci, Italy

    • Sandra Savaglio
  18. Roger Williams University, 1 Old Ferry Road, Bristol, Rhode Island 02809, USA

    • Adria C. Updike

Authors

  1. Search for Jochen Greiner in:

  2. Search for Paolo A. Mazzali in:

  3. Search for D. Alexander Kann in:

  4. Search for Thomas Krühler in:

  5. Search for Elena Pian in:

  6. Search for Simon Prentice in:

  7. Search for Felipe Olivares E. in:

  8. Search for Andrea Rossi in:

  9. Search for Sylvio Klose in:

  10. Search for Stefan Taubenberger in:

  11. Search for Fabian Knust in:

  12. Search for Paulo M. J. Afonso in:

  13. Search for Chris Ashall in:

  14. Search for Jan Bolmer in:

  15. Search for Corentin Delvaux in:

  16. Search for Roland Diehl in:

  17. Search for Jonathan Elliott in:

  18. Search for Robert Filgas in:

  19. Search for Johan P. U. Fynbo in:

  20. Search for John F. Graham in:

  21. Search for Ana Nicuesa Guelbenzu in:

  22. Search for Shiho Kobayashi in:

  23. Search for Giorgos Leloudas in:

  24. Search for Sandra Savaglio in:

  25. Search for Patricia Schady in:

  26. Search for Sebastian Schmidl in:

  27. Search for Tassilo Schweyer in:

  28. Search for Vladimir Sudilovsky in:

  29. Search for Mohit Tanga in:

  30. Search for Adria C. Updike in:

  31. Search for Hendrik van Eerten in:

  32. Search for Karla Varela in:

Contributions

J.G. led the observing campaign and the paper writing. D.A.K. was responsible for the GROND data reduction, and performed the fitting of the afterglow light curve. F.K. derived the accurate GROND astrometry, P.S. the UVOT photometry, and A.R. the host fitting. P.M. suggested the magnetar interpretation and computed the spectral models. S.P. and C.A. performed the light-curve model fitting. F.O.E. and E.P. assisted in spectral decomposition and the construction of the bolometric light curve. S.T., S.K. and G.L. provided crucial input and discussion. D.A.K., A.N.G., P.M.J.A., J.B., C.D., J.E., R.F., J.F.G., S. Schmidl, T.S., V.S., M.T., A.C.U. and K.V. performed the many epochs of GROND observations. T.K., J.P.U.F. and G.L. provided and analysed the X-shooter spectrum. S. Savaglio, S.K., R.D. and H.v.E. were instrumental in various aspects of the data interpretation.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jochen Greiner.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature14579

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.