A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst


A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested1,2,3. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts3,4 or in the tidal disruption of a star3. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts5,6,7, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae8,9, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Observed optical/near-infrared light curve of GRB 111209A.
Figure 2: Light curve of the supernova (SN 2011kl) linked with GRB 111209A and of other objects.
Figure 3: Spectra comparison.


  1. 1

    Gendre, B. et al. The ultra-long gamma-ray burst 111209A: the collapse of a blue supergiant? Astrophys. J. 766, 30 (2013)

    Article  ADS  Google Scholar 

  2. 2

    Stratta, G. et al. The ultra-long gamma-ray burst 111209A: II. Prompt to afterglow and afterglow properties. Astrophys. J. 779, 66 (2013)

    Article  ADS  CAS  Google Scholar 

  3. 3

    Levan, A. et al. A new population of ultra-long duration gamma-ray bursts. Astrophys. J. 781, 13 (2014)

    Article  ADS  CAS  Google Scholar 

  4. 4

    Nakauchi, D., Kashiyama, K., Suwa, Y. & Nakamura, T. Blue supergiant model for ultra-long gamma-ray bursts with superluminous-supernova-like bump. Astrophys. J. 778, 67 (2013)

    Article  ADS  CAS  Google Scholar 

  5. 5

    Galama, T. et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998. Nature 395, 670–672 (1998)

    Article  ADS  CAS  Google Scholar 

  6. 6

    Hjorth, J. et al. A very energetic supernova associated with the γ-ray burst of 29 March 2003. Nature 423, 847–850 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Stanek, K. Z. et al. Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophys. J. 591, L17–L20 (2003)

    Article  ADS  CAS  Google Scholar 

  8. 8

    Quimby, R. M. et al. Hydrogen-poor superluminous stellar explosions. Nature 474, 487–489 (2011)

    Article  ADS  CAS  Google Scholar 

  9. 9

    Gal-Yam, A. Luminous supernovae. Science 337, 927–932 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Dessart, L., Hillier, D. J., Waldman, R., Livne, E. & Blondin, S. Superluminous supernovae: Ni power versus magnetar radiation. Mon. Not. R. Astron. Soc. 426, L76–L80 (2012)

    Article  ADS  CAS  Google Scholar 

  11. 11

    Hoversten, E. A. et al. GRB 111209A: Swift detection of a long burst with an optical counterpart. GCN Circ. 12632 (2011)

  12. 12

    Golenetskii, S. et al. Konus-Wind observation of GRB 111209A. GCN Circ. 12663 (2011)

  13. 13

    Greiner, J. et al. GROND—a 7-channel imager. Publ. Astron. Soc. Pacif. 120, 405–424 (2008)

    Article  ADS  Google Scholar 

  14. 14

    Virgili, F. J. et al. GRB 091024A and the nature of ultra-long gamma-ray bursts. Astrophys. J. 778, 54 (2013)

    Article  ADS  CAS  Google Scholar 

  15. 15

    Zhang, B.-B., Zhang, B., Murase, K., Connaughton, V. & Briggs, M. S. How long does a burst burst? Astrophys. J. 787, 66 (2014)

    Article  ADS  Google Scholar 

  16. 16

    Leloudas, G. et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Mon. Not. R. Astron. Soc. 449, 917–932 (2015)

    Article  ADS  CAS  Google Scholar 

  17. 17

    Kleiser, I. K. W. et al. Peculiar Type II supernovae from blue supergiants. Mon. Not. R. Astron. Soc. 415, 372–382 (2011)

    Article  ADS  CAS  Google Scholar 

  18. 18

    Mazzali, P. A. & Lucy, L. B. The application of Monte Carlo methods to the synthesis of early-time supernovae spectra. Astron. Astrophys. 279, 447–456 (1993)

    ADS  Google Scholar 

  19. 19

    Mazzali, P. A. Applications of an improved Monte Carlo code to the synthesis of early-time supernova spectra. Astron. Astrophys. 363, 705–716 (2000)

    ADS  CAS  Google Scholar 

  20. 20

    Kasen, D. & Bildsten, L. Supernova light curves powered by young magnetars. Astrophys. J. 717, 245–249 (2010)

    Article  ADS  Google Scholar 

  21. 21

    Mazzali, P. A. et al. A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature 442, 1018–1020 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Ryan, G., van Eerten, H., MacFadyen, A. & Zhang, B.-B. Gamma-ray bursts are observed off-axis. Astrophys. J. 799, A3 (2015)

    Article  ADS  Google Scholar 

  23. 23

    Cano, Z. A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. Astron. Astrophys. 568, 19 (2014)

    Article  CAS  Google Scholar 

  24. 24

    Mazzali, P. A. et al. An upper limit to the energy of gamma-ray bursts indicates that GRBs/SNe are powered by magnetars. Mon. Not. R. Astron. Soc. 443, 67–71 (2014)

    Article  ADS  Google Scholar 

  25. 25

    Quataert, E. & Kasen, D. Swift 1644+57: the longest gamma-ray burst? Mon. Not. R. Astron. Soc. 419, L1–L5 (2012)

    Article  ADS  Google Scholar 

  26. 26

    Sauer, D. N. et al. The properties of the ‘standard’ type Ic supernova 1994I from spectral models. Mon. Not. R. Astron. Soc. 369, 1939–1948 (2006)

    Article  ADS  CAS  Google Scholar 

  27. 27

    Inserra, C. Super-luminous Type Ic supernovae: catching a magnetar by the tail. Astrophys. J. 770, 128 (2013)

    Article  ADS  CAS  Google Scholar 

  28. 28

    Lunnan, R. et al. PS1–10bzj: a fast, hydrogen-poor superluminous supernova in a metal-poor host galaxy. Astrophys. J. 771, 97 (2013)

    Article  ADS  CAS  Google Scholar 

  29. 29

    Vreeswijk, P. M. et al. The hydrogen-poor superluminous supernova iPTF 13ajg and its host galaxy in absorption and emission. Astrophys. J. 797, 24 (2014)

    Article  ADS  CAS  Google Scholar 

  30. 30

    Yaron, O. & Gal-Yam, A. WISeREP — an interactive supernova data repository. Publ. Astron. Soc. Pacif. 124, 668–681 (2012)

    Article  ADS  Google Scholar 

  31. 31

    Tody, D. in Astronomical Data Analysis Software and Systems II (eds Hanisch, R. J., Brissenden, R. J. V. & Barnes, J. ) 173 (ASP Conf. Ser. 52, 1993)

    Google Scholar 

  32. 32

    Krühler, T. et al. The 2175 Å feature in a gamma-ray burst afterglow at redshift 2.45. Astrophys. J. 685, 376–383 (2008)

    Article  ADS  Google Scholar 

  33. 33

    Küpcü Yoldaş, A. et al. First results of GROND. AIP Conf. Proc. 1 000, 227–231 (2008)

    Article  Google Scholar 

  34. 34

    SDSS. http://www.sdss.org/dr3/algorithms/fluxcal.html (accessed 21 October 2014)

  35. 35

    Swift: catching gamma-ray bursts on the fly. http://www.swift.ac.uk/swift_portal (2014)

  36. 36

    Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008)

    Article  ADS  CAS  Google Scholar 

  37. 37

    Schlegel, D., Finkbeiner, D. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)

    Article  ADS  Google Scholar 

  38. 38

    Vernet, J. et al. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope. Astron. Astrophys. 536, A105 (2011)

    Article  Google Scholar 

  39. 39

    Krühler, T. et al. GRB hosts through cosmic time: an emission-line survey of 96 gamma-ray burst selected galaxies between 0.1 < z < 3.6. Astron. Astrophys. (in the press); preprint at http://arXiv.org/abs/1505.06743 (2015)

  40. 40

    Arnouts, S. & Ilbert, O. Le PHARE: Photometric analysis for redshift estimate. http://www.cfht.hawaii.edu/~arnouts/LEPHARE (2014)

    Google Scholar 

  41. 41

    Arnett, W. D. Type I supernovae. I — Analytic solutions for the early part of the light curve. Astrophys. J. 253, 785–797 (1982)

    Article  ADS  CAS  Google Scholar 

  42. 42

    Valenti, S. et al. The broad-lined Type Ic supernova 2003jd. Mon. Not. R. Astron. Soc. 383, 1485–1500 (2008)

    Article  ADS  CAS  Google Scholar 

  43. 43

    Mazzali, P. A. et al. The very energetic, broad-lined Type Ic supernova 2010ah (PTF10bzf) in the context of GRB/SNe. Mon. Not. R. Astron. Soc. 432, 2463–2473 (2013)

    Article  ADS  CAS  Google Scholar 

  44. 44

    Surman, R., McLaughlin, G. C. & Hix, W. R. Nucleosynthesis in the outflow from gamma-ray burst accretion disks. Astrophys. J. 643, 1057–1064 (2006)

    Article  ADS  CAS  Google Scholar 

  45. 45

    Perna, R., Duffell, P., Cantiello, M. & MacFadyen, A. I. The fate of fallback matter around newly born compact objects. Astrophys. J. 781, 119 (2014)

    Article  ADS  CAS  Google Scholar 

  46. 46

    Cardelli, J. A., Clayton, G. C. & Mathis, J. S. The relationship between infrared, optical, and ultraviolet extinction. Astrophys. J. 345, 245–256 (1989)

    Article  ADS  CAS  Google Scholar 

Download references


We thank R. Lunnan and E. Berger for providing the spectrum of PS1-10bzj in digital form, and A. Levan for the HST grism spectra of GRB 111209A. J.G., R.D. and D.A.K. acknowledge support by the DFG cluster of excellence “Origin and Structure of the Universe” (http://www.universe-cluster.de). P.S., J.F.G. and M.T. acknowledge support through the Sofja Kovalevskaja award to P.S. from the Alexander von Humboldt Foundation, Germany. C.D. acknowledges support through EXTraS, funded from the European Union’s Seventh Framework Programme for research, technological development and demonstration. S.K., D.A.K. and A.N.G. acknowledge support by DFG. S. Schmidl acknowledges support by the Thüringer Ministerium für Bildung, Wissenschaft und Kultur. F.O.E. acknowledges support from FONDECYT. S.T. is supported by DFG. R.F. acknowledges support by Czech MEYS. Part of the funding for GROND (both hardware as well as personnel) was generously granted from the Leibniz-Prize to G. Hasinger. DARK is funded by the DNRF.

Author information




J.G. led the observing campaign and the paper writing. D.A.K. was responsible for the GROND data reduction, and performed the fitting of the afterglow light curve. F.K. derived the accurate GROND astrometry, P.S. the UVOT photometry, and A.R. the host fitting. P.M. suggested the magnetar interpretation and computed the spectral models. S.P. and C.A. performed the light-curve model fitting. F.O.E. and E.P. assisted in spectral decomposition and the construction of the bolometric light curve. S.T., S.K. and G.L. provided crucial input and discussion. D.A.K., A.N.G., P.M.J.A., J.B., C.D., J.E., R.F., J.F.G., S. Schmidl, T.S., V.S., M.T., A.C.U. and K.V. performed the many epochs of GROND observations. T.K., J.P.U.F. and G.L. provided and analysed the X-shooter spectrum. S. Savaglio, S.K., R.D. and H.v.E. were instrumental in various aspects of the data interpretation.

Corresponding author

Correspondence to Jochen Greiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Binning has no effect on spectral slope.

Original X-shooter spectrum in the UVB (a) and VIS (b) arms shown in grey (0.4 Å per pixel; before host and afterglow subtraction), with the re-binned (factor of 20) spectrum overplotted in black. The binning does not change the steepness of the spectrum, in particular not at the blue end. Yellow circles denote positions of atmospheric absorption lines.

Extended Data Figure 2 Long-wavelength spectra.

Full X-shooter spectrum near maximum light of SN 2011kl, as well as two HST grism spectra taken one week before and after the supernova maximum (both taken from ref. 3). Above 500 nm rest-frame, none contain any informative absorption lines (all absorption structures seen are from the Earth’s atmosphere).

Extended Data Figure 3 Step-by-step corrections of the supernova spectrum.

Sequence of analysis steps for the X-shooter spectrum; from the observed spectrum corrected only for galactic foreground (top, very light blue), through host subtraction (light blue) and afterglow+host subtraction (blue) to local host (SMC-like) dereddened (very dark blue). The break at 500 nm observer-frame (300 nm rest-frame) and the steep slope towards the ultraviolet are inherent to the raw spectrum, not a result of afterglow or host subtraction. The coloured data points are the photometric observations in the individual UVOT+GROND+Gemini filters.

Extended Data Figure 4 Observed spectral energy distribution of the host galaxy of GRB 111209A.

Plotted in blue are GROND g′, r′, i′, z′ detections with 1σ errors (crosses) and GROND J, H, KS upper limits (3σ; triangles) of the host galaxy of GRB 111209A. Data taken from ref. 3 are F336W (green), Gemini g′, r′ detections (red crosses) and the J-band upper limit (red triangle). The best-fit LePHARE template of a low-mass, low-extinction, young star-forming galaxy is shown, which is very typical for GRB host galaxies.

Extended Data Table 1 GROND observations of the afterglow, supernova and host of GRB 111209A
Extended Data Table 2 UVOT observations of the afterglow of GRB 111209A

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Greiner, J., Mazzali, P., Kann, D. et al. A very luminous magnetar-powered supernova associated with an ultra-long γ-ray burst. Nature 523, 189–192 (2015). https://doi.org/10.1038/nature14579

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.