Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-range energy transport in single supramolecular nanofibres at room temperature

Abstract

Efficient transport of excitation energy over long distances is a key process in light-harvesting systems, as well as in molecular electronics1,2,3. However, in synthetic disordered organic materials, the exciton diffusion length is typically only around 10 nanometres (refs 4, 5), or about 50 nanometres in exceptional cases6,7, a distance that is largely determined by the probability laws of incoherent exciton hopping. Only for highly ordered organic systems has the transport of excitation energy over macroscopic distances been reported—for example, for triplet excitons in anthracene single crystals at room temperature8, as well as along single polydiacetylene chains embedded in their monomer crystalline matrix at cryogenic temperatures (at 10 kelvin, or −263 degrees Celsius)9. For supramolecular nanostructures, uniaxial long-range transport has not been demonstrated at room temperature. Here we show that individual self-assembled nanofibres with molecular-scale diameter efficiently transport singlet excitons at ambient conditions over more than four micrometres, a distance that is limited only by the fibre length. Our data suggest that this remarkable long-range transport is predominantly coherent. Such coherent long-range transport is achieved by one-dimensional self-assembly of supramolecular building blocks, based on carbonyl-bridged triarylamines10, into well defined H-type aggregates (in which individual monomers are aligned cofacially) with substantial electronic interactions. These findings may facilitate the development of organic nanophotonic devices and quantum information technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly of compound 1.
Figure 2: Characterization of self-assembled nanofibres.
Figure 3: Long-range energy transport along single supramolecular nanofibres.

Similar content being viewed by others

References

  1. Scholes, G. D., Mirkovic, T., Turner, D. B., Fassioli, F. & Buchleitner, A. Solar light harvesting by energy transfer: from ecology to coherence. Energy Environ. Sci. 5, 9374–9393 (2012)

    Article  CAS  Google Scholar 

  2. Laquai, F., Park, Y.-S., Kim, J.-J. & Basché, T. Excitation energy transfer in organic materials: from fundamentals to optoelectronic devices. Macromol. Rapid Commun. 30, 1203–1231 (2009)

    Article  CAS  Google Scholar 

  3. Siebbeles, L. D. A. & Grozema, F. C. (eds) Charge and Exciton Transport Through Molecular Wires. (Wiley–VCH, 2011)

    Book  Google Scholar 

  4. Menke, S. M. & Holmes, R. J. Exciton diffusion in organic photovoltaic cells. Energy Environ. Sci. 7, 499–512 (2014)

    Article  CAS  Google Scholar 

  5. Lin, J. D. A. et al. Systematic study of exciton diffusion length in organic semiconductors by six experimental methods. Mater. Horiz. 1, 280–285 (2014)

    Article  ADS  CAS  Google Scholar 

  6. Bolinger, J. C., Traub, M. C., Adachi, T. & Barbara, P. F. Ultralong-range polaron-induced quenching of excitons in isolated conjugated polymers. Science 331, 565–567 (2011)

    Article  ADS  CAS  Google Scholar 

  7. Vogelsang, J., Adachi, T., Brazard, J., Vanden Bout, D. A. & Barbara, P. F. Self-assembly of highly ordered conjugated polymer aggregates with long-range energy transfer. Nature Mater. 10, 942–946 (2011)

    Article  ADS  CAS  Google Scholar 

  8. Avakian, P. & Merrifield, R. E. Experimental determination of the diffusion length of triplet exciton in anthracene crystals. Phys. Rev. Lett. 13, 541–543 (1964)

    Article  ADS  CAS  Google Scholar 

  9. Dubin, F. et al. Macroscopic coherence of a single exciton state in an organic quantum wire. Nature Phys. 2, 32–35 (2006)

    Article  ADS  CAS  Google Scholar 

  10. Haedler, A. T. et al. Synthesis and photophysical properties of multichromophoric carbonyl-bridged triarylamines. Chem. Eur. J. 20, 11708–11718 (2014)

    Article  CAS  Google Scholar 

  11. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012)

    Article  ADS  CAS  Google Scholar 

  12. Seki, S., Saeki, A., Sakurai, T. & Sakamaki, D. Charge carrier mobility in organic molecular materials probed by electromagnetic waves. Phys. Chem. Chem. Phys. 16, 11093–11113 (2014)

    Article  CAS  Google Scholar 

  13. Sengupta, S. & Würthner, F. Chlorophyll J-aggregates: from bioinspired dye stacks to nanotubes, liquid crystals, and biosupramolecular electronics. Acc. Chem. Res. 46, 2498–2512 (2013)

    Article  CAS  Google Scholar 

  14. Cantekin, S., de Greef, T. F. A. & Palmans, A. R. A. Benzene-1,3,5-tricarboxamide: a versatile ordering moiety for supramolecular chemistry. Chem. Soc. Rev. 41, 6125–6137 (2012)

    Article  CAS  Google Scholar 

  15. Dou, X., Pisula, W., Wu, J., Bodwell, G. J. & Müllen, K. Reinforced self-assembly of hexa-peri-hexabenzocoronenes by hydrogen bonds: from microscopic aggregates to macroscopic fluorescent organogels. Chem. Eur. J. 14, 240–249 (2008)

    Article  CAS  Google Scholar 

  16. Scheibe, G., Schöntag, A. & Katheder, F. Fluoreszenz und Energiefortleitung bei reversibel polymerisierten Farbstoffen. Naturwissenschaften 29, 499–501 (1939)

    Article  ADS  Google Scholar 

  17. Eisele, D. M., Knoester, J., Kirstein, S., Rabe, J. P. & Vanden Bout, D. A. Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. Nature Nanotechnol. 4, 658–663 (2009)

    Article  ADS  CAS  Google Scholar 

  18. Clark, K. A., Krueger, E. L. & Vanden Bout, D. A. Direct measurement of energy migration in supramolecular carbocyanine dye nanotubes. J. Phys. Chem. Lett. 5, 2274–2282 (2014)

    Article  CAS  Google Scholar 

  19. Lin, H. et al. Collective fluorescence blinking in linear J-aggregates assisted by long-distance exciton migration. Nano Lett. 10, 620–626 (2010)

    Article  ADS  CAS  Google Scholar 

  20. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011)

    Article  ADS  CAS  Google Scholar 

  21. Winiger, C. B., Li, S., Kumar, G. R., Langenegger, S. M. & Häner, R. Long-distance electronic energy transfer in light-harvesting supramolecular polymers. Angew. Chem. Int. Ed. 53, 13609–13613 (2014)

    Article  CAS  Google Scholar 

  22. Eisele, D. M. et al. Robust excitons inhabit soft supramolecular nanotubes. Proc. Natl Acad. Sci. USA 111, E3367–E3375 (2014)

    Article  CAS  Google Scholar 

  23. Kasha, M., Rawls, H. R. & Ashraf El-Bayoumi, M. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965)

    Article  CAS  Google Scholar 

  24. Chaudhuri, D. et al. Enhancing long-range exciton guiding in molecular nanowires by H-aggregation lifetime engineering. Nano Lett. 11, 488–492 (2011)

    Article  ADS  CAS  Google Scholar 

  25. Field, J. E. & Venkataraman, D. Heterotriangulenes—structure and properties. Chem. Mater. 14, 962–964 (2002)

    Article  CAS  Google Scholar 

  26. Kivala, M. et al. Columnar self-assembly in electron-deficient heterotriangulenes. Chem. Eur. J. 19, 8117–8128 (2013)

    Article  CAS  Google Scholar 

  27. Spano, F. C. Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J. Chem. Phys. 122, 234701 (2005)

    Article  ADS  Google Scholar 

  28. Scheblykin, I. G., Sliusarenko, O. Y., Lepnev, L. S., Vitukhnovsky, A. G. & Van der Auweraer, M. Strong nonmonotonous temperature dependence of exciton migration rate in J aggregates at temperatures from 5 to 300 K. J. Phys. Chem. B 104, 10949–10951 (2000)

    Article  CAS  Google Scholar 

  29. Cogdell, R. J., Gall, A. & Köhler, J. The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q. Rev. Biophys. 39, 227–324 (2006)

    Article  CAS  Google Scholar 

  30. Oostergetel, G. T., van Amerongen, H. & Boekema, E. J. The chlorosome: a prototype for efficient light harvesting in photosynthesis. Photosynth. Res. 104, 245–255 (2010)

    Article  CAS  Google Scholar 

  31. Issac, A. et al. Single molecule studies of calix[4]arene-linked perylene bisimide dimers: relationship between blinking, lifetime and/or spectral fluctuations. Phys. Chem. Chem. Phys. 14, 10789–10798 (2012)

    Article  CAS  Google Scholar 

  32. Issac, A., Hildner, R., Hippius, C., Würthner, F. & Köhler, J. Stepwise decrease of fluorescence versus sequential photobleaching in a single multichromophoric system. ACS Nano 8, 1708–1717 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Bavarian State Ministry of Science, Research, and the Arts for the Collaborative Research Network ‘Solar Technologies go Hybrid’, the Deutsche Forschungsgemeinschaft (DFG) within projects GRK1640 (A.T.H., A.I., B.W., J.K., H.-W.S., R.H.) HI1508/2 (R.H.), and SFB953 ‘Synthetic Carbon Allotropes’ (M.K., N.H.), and the Cluster of Excellence ‘Engineering of Advanced Materials’ (EAM) at the University of Erlangen-Nürnberg (M.K., N.H.). A.T.H. was funded by the ‘Macromolecular Science’ elite study program at the University of Bayreuth and an ‘Elite Netzwerk Bayern’ fellowship. We thank A. Schedl, M. Hund and M. Drechsler for their support with AFM and TEM.

Author information

Authors and Affiliations

Authors

Contributions

A.T.H., K.K. and H.-W.S. designed and prepared compounds 1 and 2, and investigated their self-assembly. M.K. and N.H. synthesized the functionalized CBT core as a building block for the synthesis of compounds 1 and 2. R.H., A.I., B.W. and J.K. designed and performed optical experiments on single nanofibres. All authors contributed to discussion of the data and writing of the manuscript.

Corresponding authors

Correspondence to Hans-Werner Schmidt or Richard Hildner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-12 and Supplementary references. (PDF 10931 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haedler, A., Kreger, K., Issac, A. et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–199 (2015). https://doi.org/10.1038/nature14570

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14570

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing