Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands

Abstract

The diffuse interstellar bands are absorption lines seen towards reddened stars1. None of the molecules responsible for these bands have been conclusively identified2. Two bands at 9,632 ångströms and 9,577 ångströms were reported in 1994, and were suggested to arise from C60+ molecules (ref. 3), on the basis of the proximity of these wavelengths to the absorption bands of C60+ measured in a neon matrix4. Confirmation of this assignment requires the gas-phase spectrum of C60+. Here we report laboratory spectroscopy of C60+ in the gas phase, cooled to 5.8 kelvin. The absorption spectrum has maxima at 9,632.7 ± 0.1 ångströms and 9,577.5 ± 0.1 ångströms, and the full widths at half-maximum of these bands are 2.2 ± 0.2 ångströms and 2.5 ± 0.2 ångströms, respectively. We conclude that we have positively identified the diffuse interstellar bands at 9,632 ångströms and 9,577 ångströms as arising from C60+ in the interstellar medium.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Gas-phase laboratory spectra of C60+ at 5.8 K.
Figure 2: C60+–He2 spectrum.
Figure 3: Relative cross-section measurement.

References

  1. Herbig, G. H. The diffuse interstellar bands. Annu. Rev. Astron. Astrophys. 33, 19–73 (1995)

    ADS  CAS  Article  Google Scholar 

  2. Snow, T. P. & McCall, B. J. Diffuse atomic and molecular clouds. Annu. Rev. Astron. Astrophys. 44, 367–414 (2006)

    ADS  CAS  Article  Google Scholar 

  3. Foing, B. H. & Ehrenfreund, P. Detection of two interstellar absorption bands coincident with spectral features of C60+. Nature 369, 296–298 (1994)

    ADS  CAS  Article  Google Scholar 

  4. Fulara, J., Jakobi, M. & Maier, J. P. Electronic and infrared spectra of C60+ and C60 in neon and argon matrices. Chem. Phys. Lett. 211, 227–234 (1993)

    ADS  CAS  Article  Google Scholar 

  5. Kroto, H. W., Heath, J. R., O'Brian, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    ADS  CAS  Article  Google Scholar 

  6. Kroto, H. W. Space, stars, C60, and soot. Science 242, 1139–1145 (1988)

    ADS  CAS  Article  Google Scholar 

  7. Herbig, G. H. The search for interstellar C60 . Astrophys. J. 542, 334–343 (2000)

    ADS  CAS  Article  Google Scholar 

  8. Kroto, H. W. & Jura, M. Circumstellar and interstellar fullerenes and their analogues. Astron. Astrophys. 263, 275–280 (1992)

    ADS  CAS  Google Scholar 

  9. Cami, J., Bernard-Salas, J., Peeters, E. & Malek, S. E. Detection of C60 and C70 in a young planetary nebula. Science 329, 1180–1182 (2010)

    ADS  CAS  Article  Google Scholar 

  10. Sellgren, K. et al. C60 in reflection nebulae. Astrophys. J. 722, L54–L57 (2010)

    ADS  CAS  Article  Google Scholar 

  11. Chakrabarty, S. et al. A novel method to measure electronic spectra of cold molecular ions. J. Phys. Chem. Lett. 4, 4051–4054 (2013)

    CAS  Article  Google Scholar 

  12. Gerlich, D. Ion-neutral collisions in a 22-pole trap at very low energies. Phys. Scr. T59, 256–263 (1995)

    ADS  Article  Google Scholar 

  13. Chakrabarty, S., Rice, C. A., Mazzotti, F. J., Dietsche, R. & Maier, J. P. Electronic absorption spectrum of triacetylene cation for astronomical considerations. J. Phys. Chem. A 117, 9574–9577 (2013)

    CAS  Article  Google Scholar 

  14. Jašík, J., Žabka, J., Roithová, J. & Gerlich, D. Infrared spectroscopy of trapped molecular dications below 4 K. Int. J. Mass Spectrom. 354–355, 204–210 (2013)

    Article  Google Scholar 

  15. Duncan, M. A. Infrared laser spectroscopy of mass-selected carbocations. J. Phys. Chem. A 117, 11477–11491 (2012)

    Article  Google Scholar 

  16. Bieske, E. J., Soliva, A. M., Friedmann, A. & Maier, J. P. Electronic spectra of N2+–(He)n (n = 1, 2, 3). J. Chem. Phys. 96, 28–34 (1992)

    ADS  CAS  Article  Google Scholar 

  17. Jenniskens, P., Mulas, G., Porceddu, I. & Benvenuti, P. Diffuse interstellar bands near 9600 Å: not due to C60+ yet. Astron. Astrophys. 327, 337–341 (1997)

    ADS  CAS  Google Scholar 

  18. Foing, B. H. & Ehrenfreund, P. New evidences for interstellar C60+. Astron. Astrophys. 317, L59–L62 (1997)

    ADS  CAS  Google Scholar 

  19. Galazutdinov, G. A., Krelowski, J., Musaev, F. A., Ehrenfreund, P. & Foing, B. H. On the identification of the C60+ interstellar features. Mon. Not. R. Astron. Soc. 317, 750–758 (2000)

    ADS  CAS  Article  Google Scholar 

  20. Edwards, S. A. & Leach, S. Simulated rotational band contours of C60 and their comparison with some of the diffuse interstellar bands. Astron. Astrophys. 272, 533–540 (1993)

    ADS  CAS  Google Scholar 

  21. Indriolo, N., Geballe, T. R., Oka, T. & McCall, B. J. H3+ in diffuse interstellar clouds: a tracer for the cosmic-ray ionization rate. Astrophys. J. 671, 1736–1747 (2007)

    ADS  CAS  Article  Google Scholar 

  22. Maier, J. P., Lakin, N. M., Walker, G. A. H. & Bohlender, D. A. Detection of C3 in diffuse interstellar clouds. Astrophys. J. 553, 267–273 (2001)

    ADS  CAS  Article  Google Scholar 

  23. Gasyna, Z., Andrews, L. & Schatz, P. N. Near-infrared absorption spectra of C60 radical cations and anions prepared simultaneously in solid argon. J. Phys. Chem. 96, 1525–1527 (1992)

    CAS  Article  Google Scholar 

  24. Langford, V. S. & Williamson, B. E. Magnetic circular dichroism of C60+ and C60 radicals in argon matrixes. J. Phys. Chem. A 103, 6533–6539 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the European Research Council (ERC-AdG-ElecSpecIons: 246998)

Author information

Authors and Affiliations

Authors

Contributions

E.K.C., M.H. and D.G. recorded and analysed the experimental data. J.P.M. and E.K.C. wrote the paper with input from all authors. All authors discussed the results and commented on the manuscript. J.P.M. initiated and led the project.

Corresponding author

Correspondence to J. P. Maier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Influence of laser power on the 9,577.5 Å band.

Gas-phase spectrum recorded by monitoring the depletion on the C60+–He mass channel using 1.5 mW (black) and 14 mW (red). Gaussian fits to experimental data (circles) are represented by solid lines, and give FWHMs of 2.5 ± 0.2 Å and 4.1 ± 0.2 Å at 1.5 mW and 14 mW, respectively. The blue dashed line shows a Gaussian with a FWHM of 2.5 Å.

Source data

Related audio

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Campbell, E., Holz, M., Gerlich, D. et al. Laboratory confirmation of C60+ as the carrier of two diffuse interstellar bands. Nature 523, 322–323 (2015). https://doi.org/10.1038/nature14566

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14566

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing