Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Design, fabrication and control of soft robots

Abstract

Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mobile soft-robotic systems inspired by a range of biological systems.
Figure 2: Approximate tensile modulus (Young's modulus) of selected engineering and biological materials.
Figure 3: Grasping and manipulation, which are canonical challenges in robotics, can be greatly simplified with soft robotics.
Figure 4: Cross-section of common approaches to actuation of soft-robot bodies in resting (left) and actuated (right) states.
Figure 5: A soft robotic fish.

Similar content being viewed by others

References

  1. Full, R. J. in Comprehensive Physiology 853–930 (Wiley, 1997).

    Google Scholar 

  2. Dickinson, M. H. et al. How animals move: an integrative view. Science 288, 100–106 (2000).

    ADS  CAS  PubMed  Google Scholar 

  3. Trivedi, D., Rahn, C. D., Kier, W. M. & Walker, I. D. Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5, 99–117 (2008). This paper discusses the biological inspiration for soft robotics and reviews the first generation of soft-robotic systems, which employ primarily pneumatic artificial muscle or electroactive polymer actuators.

    Google Scholar 

  4. Kim, S., Laschi, C. & Trimmer, B. Soft robotics: a bioinspired evolution in robotics. Trends Biotechnol. 31, 287–294 (2013). This paper reviews design and actuation approaches for soft robots, and discusses the biomechanics of three organisms that frequently serve as inspiration.

    CAS  PubMed  Google Scholar 

  5. Majidi, C. Soft robotics: a perspective — current trends and prospects for the future. Soft Robotics 1, 5–11 (2014).

    Google Scholar 

  6. Laschi, C. & Cianchetti, M. Soft robotics: new perspectives for robot bodyware and control. Front. Bioeng. Biotechnol. 2, 3 (2014).

    PubMed  PubMed Central  Google Scholar 

  7. Marchese, A. D., Tedrake, R. & Rus, D. Dynamics and trajectory optimization for a soft spatial fluidic elastomer manipulator. J. Robotics Res. (in the press). This paper describes a new algorithm for dynamic control of soft robots and demonstrates the use of this method to achieve reachability outside of the static envelope of the robot.

  8. Onal, C. D. & Rus, D. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot. Bioinspir. Biomim. 8, 026003 (2013). This paper presents a mobile soft robot composed of bidirectional fluidic elastomer actuators to achieve snake-like locomotion.

    ADS  PubMed  Google Scholar 

  9. Mazzolai, B., Margheri, L., Cianchetti, M., Dario, P. & Laschi, C. Soft-robotic arm inspired by the octopus: from artificial requirements to innovative technological solutions. Bioinspir. Biomim. 7, 025005 (2012). This paper presents the design of a biologically inspired artificial muscular hydrostat for underwater soft robotics.

    ADS  CAS  PubMed  Google Scholar 

  10. Tolley, M. T. et al. A resilient, untethered soft robot. Soft Robotics 1, 213–223 (2014). This paper addresses the design of a soft-robot system with legs that is capable of carrying the components required for untethered walking without a skeleton, and demonstrates that soft robots can be resilient to harsh conditions such as large external forces and extreme temperatures.

    Google Scholar 

  11. Marchese, A. D., Onal, C. D. & Rus, D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics 1, 75–87 (2014). This paper describes a self-contained autonomous robot fish that is capable of executing biologically inspired escape manoeuvres (rapid changes in direction) in hundreds of milliseconds, which is on a par with similarly sized fish.

    PubMed  PubMed Central  Google Scholar 

  12. Albu-Schaffer, A. et al. Soft robotics. IEEE Robot. Automat. Mag. 15, 20–30 (2008).

    Google Scholar 

  13. Deimel, R. & Brock, O. A novel type of compliant, underactuated robotic hand for dexterous grasping. In Proc. Robotics: Science and Systems 1687–1692 (2014). This paper describes the design and testing of an inexpensive, modular, underactuated soft robot hand with pneumatically actuated fibre-reinforced elastomer digits.

  14. Majidi, C., Shepherd, R. F., Kramer, R. K., Whitesides, G. M. & Wood, R. J. Influence of surface traction on soft robot undulation. Int. J. Robot. Res. 32, 1577–1584 (2013).

    Google Scholar 

  15. Paul, C. Morphological computation: a basis for the analysis of morphology and control requirements. Robot. Auton. Syst. 54, 619–630 (2006).

    ADS  Google Scholar 

  16. Hauser, H., Ijspeert, A. J., Fuchslin, R. M., Pfeifer, R. & Maass, W. Towards a theoretical foundation for morphological computation with compliant bodies. Biol. Cybern. 105, 355–370 (2011).

    MathSciNet  PubMed  MATH  Google Scholar 

  17. Hannan, M. W. & Walker, I. D. Kinematics and the implementation of an elephant's trunk manipulator and other continuum style robots. J. Robot. Syst. 20, 45–63 (2003).

    PubMed  MATH  Google Scholar 

  18. Camarillo, D. B., Carlson, C. R. & Salisbury, J. K. Configuration tracking for continuum manipulators with coupled tendon drive. IEEE Trans. Robot. 25, 798–808 (2009).

    Google Scholar 

  19. McMahan, W. et al. Field trials and testing of the octarm continuum manipulator. In Proc. IEEE International Conference on Robotics and Automation 2336–2341 (2006).

    Google Scholar 

  20. Lin, H., Leisk, G. & Trimmer, B. Soft robots in space: a perspective for soft robotics. Acta Futura 6, 69–79 (2013).

    Google Scholar 

  21. Correll, N., Onal, C., Liang, H., Schoenfeld, E. & Rus, D. in Experimental Robotics 227–240 (Springer, 2014).

    Google Scholar 

  22. Jung, K. et al. Artificial annelid robot driven by soft actuators. Bioinspir. Biomim. 2, S42–S49 (2007).

    ADS  PubMed  Google Scholar 

  23. Calisti, M. et al. An octopus-bioinspired solution to movement and manipulation for soft robots. Bioinspir. Biomim. 6, 036002 (2011).

    ADS  CAS  PubMed  Google Scholar 

  24. Laschi, C. et al. Soft robot arm inspired by the octopus. Adv. Robot. 26, 709–727 (2012).

    Google Scholar 

  25. Schulte, H. in The Application of External Power in Prosthetics and Orthotics 94–115 (1961).

    Google Scholar 

  26. Chou, C.-P. & Hannaford, B. Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Automat. 12, 90–102 (1996).

    Google Scholar 

  27. Suzumori, K., Iikura, S. & Tanaka, H. Applying a flexible microactuator to robotic mechanisms. IEEE Control Syst. 12, 21–27 (1992).

    Google Scholar 

  28. Onal, C. D., Chen, X., Whitesides, G. M. & Rus, D. Soft mobile robots with on-board chemical pressure generation. In Proc. International Symposium on Robotics Research 1–16 (2011).

    Google Scholar 

  29. Shepherd, R. F. et al. Multigait soft robot. Proc. Natl Acad. Sci. USA 108, 20400–20403 (2011). This paper describes the rapid design and fabrication of a soft robot body capable of walking and undulating tethered to a pneumatic actuation system.

    ADS  CAS  PubMed  Google Scholar 

  30. Marchese, A. D., Komorowski, K., Onal, C. D. & Rus, D. Design and control of a soft and continuously deformable 2D robotic manipulation system. In Proc. IEEE International Conference on Robotics and Automation 2189–2196 (2014).

  31. Katzschmann, R. K., Marchese, A. D. & Rus, D. Hydraulic autonomous soft robotic fish for 3D swimming. In Proc. International Symposium on Experimental Robotics 1122374 (2014).

  32. Polygerinos, P., Wang, Z., Galloway, K. C., Wood, R. J. & Walsh, C. J. Soft robotic glove for combined assistance and at-home rehabilitation. Robot. Auton. Syst. http://dx.doi.org/10.1016/j.robot.2014.08.014 (2014). This paper demonstrates a wearable soft robotic system, which augments the grasping force of wearers for rehabilitation.

  33. Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X. & Whitesides, G. M. Soft robotics for chemists. Angew. Chem. 123, 1930–1935 (2011). This paper demonstrates the effective use of methods and materials from chemistry and soft-materials science in the fabrication of soft robots.

    Google Scholar 

  34. Martinez, R. V. et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Adv. Mater. 25, 205–212 (2013).

    CAS  PubMed  Google Scholar 

  35. Morin, S. A. et al. Camouflage and display for soft machines. Science 337, 828–832 (2012).

    ADS  CAS  PubMed  Google Scholar 

  36. Mosadegh, B. et al. Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24, 2163–2170 (2014).

    CAS  Google Scholar 

  37. Park, Y.-L. et al. Design and control of a bio-inspired soft wearable robotic device for ankle–foot rehabilitation. Bioinspir. Biomim. 9, 016007 (2014).

    ADS  PubMed  Google Scholar 

  38. Bar-Cohen, Y. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges (SPIE, 2004).

    Google Scholar 

  39. Wallace, G. G., Teasdale, P. R., Spinks, G. M. & Kane-Maguire, L. A. Conductive Electroactive Polymers: Intelligent Polymer Systems (CRC, 2008).

    Google Scholar 

  40. Cheng, N. G., Gopinath, A., Wang, L., Iagnemma, K. & Hosoi, A. E. Thermally tunable, self-healing composites for soft robotic applications. Macromol. Mater. Eng. 299, 1279–1284 (2014).

    CAS  Google Scholar 

  41. Shan, W., Lu, T. & Majidi, C. Soft-matter composites with electrically tunable elasticrigidity. Smart Mater. Struct. 22, 085005 (2013).

    ADS  CAS  Google Scholar 

  42. Steltz, E., Mozeika, A., Rodenberg, N., Brown, E. & Jaeger, H. M. JSEL: jamming skin enabled locomotion. In Proc. International Conference on Intelligent Robots and Systems 5672–5677 (2009).

  43. Cianchetti, M. et al. Stiff-flop surgical manipulator: mechanical design and experimental characterization of the single module. In Proc. International Conference on Intelligent Robots and Systems 3576–3581 (2013).

    Google Scholar 

  44. Brown, E. et al. Universal robotic gripper based on the jamming of granular material. Proc. Natl Acad. Sci. USA 107, 18809–18814 (2010).

    ADS  CAS  Google Scholar 

  45. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    ADS  CAS  PubMed  Google Scholar 

  46. Hammock, M. L., Chortos, A., Tee, B. C.-K., Tok, J. B.-H. & Bao, Z. The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv. Mater. 25, 5997–6038 (2013).

    CAS  PubMed  Google Scholar 

  47. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    ADS  CAS  PubMed  Google Scholar 

  48. Yang, S. & Lu, N. Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors 13, 8577–8594 (2013).

    CAS  PubMed  Google Scholar 

  49. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    ADS  CAS  PubMed  Google Scholar 

  50. Vogt, D. M., Park, Y.-L. & Wood, R. J. Design and characterization of a soft multi-axis force sensor using embedded microfluidic channels. IEEE Sensors J. 13, 4056–4064 (2013).

    ADS  Google Scholar 

  51. Majidi, C., Kramer, R. & Wood, R. J. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Mater. Struct. 20, 105017 (2011).

    ADS  Google Scholar 

  52. Kramer, R. K., Majidi, C. & Wood, R. J. Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23, 5292–5296 (2013).

    CAS  Google Scholar 

  53. Muth, J. T. et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv. Mater. 26, 6307–6312 (2014).

    CAS  PubMed  Google Scholar 

  54. Taylor, R. F. & Schultz, J. S. Handbook of Chemical and Biological Sensors (CRC, 1996).

    Google Scholar 

  55. Wehner, M. et al. Pneumatic energy sources for autonomous and wearable soft robotics. Soft Robotics 1, 263–274 (2014).

    Google Scholar 

  56. Goldfarb, M., Barth, E. J., Gogola, M. A. & Wehrmeyer, J. A. Design and energetic characterization of a liquid-propellant-powered actuator for self-powered robots. IEEE/ASME Trans. Mechatronics 8, 254–262 (2003).

    Google Scholar 

  57. Shepherd, R. F. et al. Using explosions to power a soft robot. Angew. Chem. 125, 2964–2968 (2013).

    Google Scholar 

  58. Tolley, M. T. et al. An untethered jumping soft robot. In Proc. International Conference on Intelligent Robots and Systems 561–566 (2014).

  59. Xu, S. et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nature Commun. 4, 1543 (2013).

    ADS  Google Scholar 

  60. Li, N., Chen, Z., Ren, W., Li, F. & Cheng, H.-M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl Acad. Sci. USA 109, 17360–17365 (2012).

    ADS  CAS  PubMed  Google Scholar 

  61. Suga, T., Ohshiro, H., Sugita, S., Oyaizu, K. & Nishide, H. Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery. Adv. Mater. 21, 1627–1630 (2009).

    CAS  Google Scholar 

  62. Gaikwad, A. M. et al. Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv. Mater. 24, 5071–5076 (2012).

    CAS  PubMed  Google Scholar 

  63. Lipson, H. Challenges and opportunities for design, simulation, and fabrication of soft robots. Soft Robotics 1, 21–27 (2014).

    Google Scholar 

  64. Hiller, J. & Lipson, H. Automatic design and manufacture of soft robots. IEEE Trans. Robot. 28, 457–466 (2012).

    Google Scholar 

  65. Rieffel, J., Knox, D., Smith, S. & Trimmer, B. Growing and evolving soft robots. Artif. Life 20, 143–162 (2014).

    PubMed  Google Scholar 

  66. Cho, K. J. et al. Review of manufacturing processes for soft biomimetic robots. Int. J. Precis. Eng. Man. 10, 171–181 (2009).

    Google Scholar 

  67. Lipson, H. & Kurman, M. Fabricated: The New World of 3D Printing (Wiley, 2013).

    Google Scholar 

  68. Cham, J. G., Bailey, S. A., Clark, J. E., Full, R. J. & Cutkosky, M. R. Fast and robust: hexapedal robots via shape deposition manufacturing. Int. J. Robot. Res. 21, 869–882 (2002).

    Google Scholar 

  69. Xia, Y. & Whitesides, G. M. Soft lithography. Annu. Rev. Mater. Sci. 28, 153–184 (1998).

    ADS  CAS  Google Scholar 

  70. Marchese, A. D., Katzschmann, R. & Rus, D. A recipe for soft fluidic elastomer robots. Soft Robotics 2, 7–25 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Sumbre, G., Fiorito, G., Flash, T. & Hochner, B. Octopus uses human-like strategy to control point-to-point arm movement. Curr. Biol. 16, 767–772 (2006).

    CAS  PubMed  Google Scholar 

  72. Margheri, L., Laschi, C. & Mazzolai, B. Soft robotic arm inspired by the octopus: I. from biological functions to artificial requirements. Bioinspir. Biomim. 7, 025004 (2012).

    ADS  CAS  PubMed  Google Scholar 

  73. Lin, H.-T., Leisk, G. G. & Trimmer, B. GoQBot: a caterpillar-inspired soft-bodied rolling robot. Bioinspir. Biomim. 6, 026007 (2011). This paper describes a soft mobile robot developed as a tool to study caterpillar locomotion including crawling and ballistic rolling.

    ADS  PubMed  Google Scholar 

  74. Saunders, F., Trimmer, B. A. & Rife, J. Modeling locomotion of a soft-bodied arthropod using inverse dynamics. Bioinspir. Biomim. 6, 016001 (2011).

    ADS  PubMed  Google Scholar 

  75. Webster, R. J. & Jones, B. A. Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Robot. Res. 29, 1661–1683 (2010).

    Google Scholar 

  76. Gravagne, I. A., Rahn, C. D. & Walker, I. D. Large deflection dynamics and control for planar continuum robots. IEEE/ASME Trans. Mechatronics 8, 299–307 (2003).

    Google Scholar 

  77. Jones, B. A. & Walker, I. D. Kinematics for multisection continuum robots. IEEE Trans. Robot. 22, 43–55 (2006).

    Google Scholar 

  78. Renda, F., Giorelli, M., Calisti, M., Cianchetti, M. & Laschi, C. Dynamic model of a multi-bending soft robot arm driven by cables. IEEE Trans. Robot. 30, 1109–1122 (2014).

    Google Scholar 

  79. Neppalli, S., Csencsits, M. A., Jones, B. A. & Walker, I. D. Closed-form inverse kinematics for continuum manipulators. Adv. Robot. 23, 2077–2091 (2009).

    Google Scholar 

  80. Wang, H. et al. Visual servo control of cable-driven soft robotic manipulator. In Proc. International Conference on Intelligent Robots and Systems 57–62 (2013).

  81. Khatib, O., Sentis, L., Park, J. & Warren, J. Whole body dynamic behavior and control of human-like robots. Int. J. Humanoid Robot. 1, 29–43 (2004).

    Google Scholar 

  82. Napp, N., Araki, B., Tolley, M. T., Nagpal, R. & Wood, R. J. Simple passive valves for addressable pneumatic actuation. In Proc. International Conference on Robotics and Automation 1440–1445 (2014).

  83. Chirikjian, G. S. Hyper-redundant manipulator dynamics: a continuum approximation. Adv. Robot. 9, 217–243 (1994).

    Google Scholar 

  84. Yekutieli, Y. et al. Dynamic model of the octopus arm. I. biomechanics of the octopus reaching movement. J. Neurophysiol. 94, 1443–1458 (2005). This paper describes a 2D dynamic model for a soft manipulator based on muscular hydrostats.

    PubMed  Google Scholar 

  85. Snyder, J. & Wilson, J. Dynamics of the elastic with end mass and follower loading. J. Appl. Mech. 57, 203–208 (1990).

    ADS  Google Scholar 

  86. Tatlicioglu, E., Walker, I. D. & Dawson, D. M. Dynamic modeling for planar extensible continuum robot manipulators. In Proc. International Conference on Robotics and Automation 1357–1362 (2007).

  87. Luo, M., Agheli, M. & Onal, C. D. Theoretical modeling and experimental analysis of a pressure-operated soft robotic snake. Soft Robotics 1, 136–146 (2014).

    Google Scholar 

  88. Seok, S. et al. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. IEEE/ASME Trans. Mechatronics 18, 1485–1497 (2013).

    Google Scholar 

  89. Stokes, A. A., Shepherd, R. F., Morin, S. A., Ilievski, F. & Whitesides, G. M. A hybrid combining hard and soft robots. Soft Robotics 1, 70–74 (2014).

    Google Scholar 

  90. Amend, J. R., Brown, E. M., Rodenberg, N., Jaeger, H. M. & Lipson, H. A positive pressure universal gripper based on the jamming of granular material. IEEE Trans. Robot. 28, 341–350 (2012).

    Google Scholar 

  91. Sanan, S., Lynn, P. S. & Griffith, S. T. Pneumatic torsional actuators for inflatable robots. J. Mech. Robot. 6, 031003 (2014).

    Google Scholar 

  92. Kramer, R. K., Majidi, C. & Wood, R. J. Wearable tactile keypad with stretchable artificial skin. In Proc. International Conference on Robotics and Automation 1103–1107 (2011).

  93. Mengüç, Y. et al. Wearable soft sensing suit for human gait measurement. Inter. J. Robotics Res. 33, 1748–1764 (2014).

    Google Scholar 

  94. Song, Y. S. et al. Soft robot for gait rehabilitation of spinalized rodents. In Proc. International Conference on Intelligent Robots and Systems 971–976 (2013).

  95. Roche, E. T. et al. A bioinspired soft actuated material. Adv. Mater. 26, 1200–1206 (2014).

    CAS  PubMed  Google Scholar 

  96. Ieropoulos, I., Anderson, I. A., Gisby, T., Wang, C.-H. & Rossiter, J. Microbial-powered artificial muscles for autonomous robots. Proc. SPIE 7287, 728708–728708 (2009).

    Google Scholar 

  97. Nawroth, J. C. et al. A tissue-engineered jellyfish with biomimetic propulsion. Nature Biotechnol. 30, 792–797 (2012).

    CAS  Google Scholar 

  98. Chambers, L., Winfield, J., Ieropoulos, I. & Rossiter, J. Biodegradable and edible gelatine actuators for use as artificial muscles. Proc. SPIE 9056, 90560B (2014).

    ADS  Google Scholar 

  99. Pfeifer, R., Bongard, J. & Grand, S. How the Body Shapes The Way We Think: A New View of Intelligence (MIT Press, 2007).

    Google Scholar 

  100. Suzumori, K., Endo, S., Kanda, T., Kato, N. & Suzuki, H. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot. In Proc. International Conference on Robotics and Automation 4975–4980 (2007).

Download references

Acknowledgements

The authors would like to thank A. Marchese and R. Katzschmann for their insightful comments and suggestions in editing this paper. This work was done with partial support from the National Science Foundation grant number IIS-1226883, for which we are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Rus.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rus, D., Tolley, M. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015). https://doi.org/10.1038/nature14543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14543

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing