Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Science, technology and the future of small autonomous drones

Abstract

We are witnessing the advent of a new era of robots — drones — that can autonomously fly in natural and man-made environments. These robots, often associated with defence applications, could have a major impact on civilian tasks, including transportation, communication, agriculture, disaster mitigation and environment preservation. Autonomous flight in confined spaces presents great scientific and technical challenges owing to the energetic cost of staying airborne and to the perceptual intelligence required to negotiate complex environments. We identify scientific and technological advances that are expected to translate, within appropriate regulatory frameworks, into pervasive use of autonomous drones for civilian applications.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Autonomous drones in rescue situations.
Figure 2: Drone types with examples.
Figure 3: Flight time against mass of small (less than 1 kg) drones.

References

  1. Bouabdallah, S. Design and Control of Quadrotors with Applications to Autonomous Flying. PhD thesis, Ecole Polytechnique Federale de Lausanne (2007).

    Google Scholar 

  2. Ladson, C. L., Brooks, C. W. Jr, Hill, A. S. & Sproles, D. W. Computer Program to Obtain Ordinates for NACA Airfoils. Report No. 4741 (NASA, 1996).

    Google Scholar 

  3. Kumar, V. & Michael, N. Opportunities and challenges with autonomous micro aerial vehicles. Int. J. Robot. Res. 31, 1279–1291 (2012). This paper describes scaling laws for dynamics and control of quad rotors and related micro air vehicles.

    Article  Google Scholar 

  4. Mellinger, D., Michael, N. & Kumar, V. Trajectory generation and control for precise aggressive maneuvers with quadrotors. Int. J. Robot. Res. 31, 664–674 (2012).

    Article  Google Scholar 

  5. Brescianini, D., Hehn, M. & D'Andrea, R. Quadrocopter pole acrobatics. In Proc. International Conference on Intelligent Robots and Systems 3472–3479 (2013).

  6. Shen, S., Mulgaonkar, Y., Michael, N. & Kumar, V. Vision-based state estimation and trajectory control towards aggressive flight with a quadrotor. In Proc. Robotics: Science and Systems http://www.roboticsproceedings.org/rss09/p32.html (2013).

    Google Scholar 

  7. Bry, A., Bachrach, A. & Roy, N. State estimation for aggressive flight in GPS-denied environments using onboard sensing. In Proc. IEEE International Conference on Robotics and Automation http://dx.doi.org/10.1109/ICRA.2012.6225295 (2012).

    Google Scholar 

  8. de Croon, G. C. H. E. et al. Design, aerodynamics and autonomy of the DelFly. Bioinspir. Biomim. 7, 025003 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Keennon, M., Klingebiel, K. & Won, H. Development of the Nano Hummingbird: a tailless flapping wing micro air vehicle. In Proc. AIAA Aerospace Sciences Meeting http://dx.doi.org/10.2514/6.2012-588 (2012).

  10. Trimmer, W. S. N. Microrobots and micromechanical systems. Sens. Actuators 19, 267–287 (1989).

    Article  Google Scholar 

  11. Wood, R. J. et al. Progress on 'pico' air vehicles. Int. J. Robot. Res. 31, 1292–1302 (2012).

    Article  Google Scholar 

  12. Finio, B. M. & Wood, R. J. Distributed power and control actuation in the thoracic mechanics of a robotic insect. Bioinspir. Biomim. 5, 045006 (2010).

    Article  ADS  PubMed  Google Scholar 

  13. Ma, K., Chirarattananon, P., Fuller, S. & Wood, R. J. Controlled flight of a biologically inspired, insect-scale robot. Science 340, 603–607 (2013). This paper details the development of a flying robotic insect and the first controlled flight of this vehicle.

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Wood, R. J., Steltz, E. & Fearing, R. S. Optimal energy density piezoelectric bending actuators. Sensors Actuators A: Physical 119, 476–488 (2005).

    Article  CAS  Google Scholar 

  15. Phys.org. World's Lightest Micro-Flying Robot Built by Epson http://phys.org/news860.html (2004).

  16. Kovac, M., Guignard, A., Nicoud, J.-D., Zufferey, J.-C. & Floreano, D. A 1.5g SMA-actuated microglider looking for the light. In Proc. International Conference on Robotics and Automation 367–372 (2007).

  17. Shintake, J., Rosset, S., Schubert, B. E., Floreano, D. & Shea, H. A foldable antagonistic actuator. IEEE/ASME Trans. Mechatron. http://dx.doi.org/10.1109/TMECH.2014.2359337 (2014).

  18. Dickinson, M. H., Lehmann, F. O. & Sane, S. P. Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954–1960 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Wood, R. J., Nagpal, R. & Wei, G.-Y. Flight of the RoboBees. Sci. Am. 308 http://www.scientificamerican.com/article/robobee-project-building-flying-robots-insect-size/ (2013).

  20. Sreetharan, P., Whitney, J. P., Strauss, M. & Wood, R. J. Monolithic fabrication of millimeter-scale machines. J. Micromech. Microeng. 22, 055027 (2012).

    Article  ADS  CAS  Google Scholar 

  21. Daler, L., Klaptocz, A., Briod, A., Sitti, M. & Floreano, D. A perching mechanism for flying robots using a fibre-based adhesive. In Proc. International Conference on Robotics and Automation 4418–4423 (2013).

    Google Scholar 

  22. Moore, J. & Tedrake, R. Magnetic localization for perching UAVs on powerlines. In Proc. International Conference on Intelligent Robots and Systems 2700–2707 (2011).

    Google Scholar 

  23. Bachmann, R. J., Boria, F. J., Vaidyanathan, R. & Ifju, P. G. A biologically inspired micro-vehicle capable of aerial and terrestrial locomotion. Mechanism Mach. Theory 44, 513–526 (2009).

    Article  MATH  Google Scholar 

  24. Peterson, K., Birkmeyer, P., Dudley, R. & Fearing, R. S. A wing-assisted running robot and implications for avian flight evolution. Bioinspir. Biomim. 6, 046008 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Gabrielli, G. & von Kármán, T. What price speed? Specific power required for propulsion of vehicles. Mech. Eng. 72, 775–781 (1950).

    Google Scholar 

  26. Daler, L., Mintchev, S., Stefanini, C. & Floreano, D. A bioinspired multi-modal flying and walking robot. Bioinspir. Biomim. 10, 016005 (2015).

    Article  ADS  PubMed  Google Scholar 

  27. Riskin, D. K. & Hermanson, J. W. Biomechanics: independent evolution of running in vampire bats. Nature 434, 292 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Itasse, M., Moschetta, J.-M., Ameho, Y. & Carr, R. Equilibrium transition study for a hybrid MAV. Inter. J. Micro Air Vehicles 3, 229–246 (2011).

    Article  Google Scholar 

  29. Kalantari, A. & Spenko, M. Design and experimental validation of HyTAQ, a hybrid terrestrial and aerial quadrotor. In Proc. International Conference on Robotics and Automation 4445–4450 (2013).

    Google Scholar 

  30. Briod, A., Kornatowski, P. M., Zufferey, J.-C. & Floreano, D. A collision resilient flying robot. J. Field Robot. 31, 496–509 (2014).

    Article  Google Scholar 

  31. Vidyasagar, A., Zufferey, J.-C., Floreano, D. & Kovac, M. Performance analysis of jump-gliding locomotion for miniature robotics. Bioinspir. Biomim. 10, 025006 (2015).

    Google Scholar 

  32. Woodward, M. A. & Sitti, M. MultiMo-Bat: a biologically inspired integrated jumping–gliding robot. Int. J. Robot. Res. 33, 1511–1529 (2014).

    Article  Google Scholar 

  33. Desbiens, A. L., Pope, M. T., Christensen, D. L., Hawkes, E. W. & Cutkosky, M. R. Design principles for efficient, repeated jump gliding. Bioinspir. Biomim. 9, 025009 (2014).

    Article  ADS  PubMed  Google Scholar 

  34. Siddall, R. & Kovač, M. Launching the AquaMAV: bioinspired design for aerial–aquatic robotic platforms. Bioinspir. Biomim. 9, 031001 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Floreano, D., Zufferey, J.-C., Srinivasan, M. V. & Ellington, C. Flying Insects and Robots (Springer, 2009). This book provides an introduction to insect-inspired drones for biologists and engineers.

    Google Scholar 

  36. Land, M. F. & Nilsson, D.-E. Animal Eyes (Oxford Univ. Press, 2002).

    Google Scholar 

  37. Srinivasan, M. V. How insects infer range from visual motion. Rev. Oculomot. Res. 5, 139–156 (1993).

    CAS  PubMed  Google Scholar 

  38. Gibson, J. J. The Perception of the Visual World (Houghton Mifflin, 1950).

    Google Scholar 

  39. Koenderink, J. J. Optic Flow. Vision Res. 26, 161–179 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. Lehrer, M., Srinivasan, M. V., Zhang, S. W. & Horridge, G. A. Motion cues provide the bee's visual world with a third dimension. Nature 332, 356–357 (1988).

    Article  ADS  Google Scholar 

  41. Franceschini, N., Riehle, A. & Le Nestour, A. in Facets of Vision (eds Stavenga, D. G. & Hardie, R. C.) 360–390 (Springer, 1989).

    Book  Google Scholar 

  42. Krapp, H. G. & Hengstenberg, R. Estimation of self-motion by optic flow processing in single visual interneurons. Nature 384, 463–466 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Tammero, L. F. & Dickinson, M. H. The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J. Exp. Biol. 205, 327–343 (2002).

    Article  PubMed  Google Scholar 

  44. Barron, A. & Srinivasan, M. V. Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L.). J. Exp. Biol. 209, 978–984 (2006).

    Article  PubMed  Google Scholar 

  45. Srinivasan, M. V., Zhang, S. W., Altwein, M. & Tautz, J. Honeybee navigation: nature and calibration of the “odometer”. Science 287, 851–853 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Serres, J., Masson, G., Ruffier, F. & Franceschini, N. A bee in the corridor: centering and wall-following. Naturwissenschaften 95, 1181–1187 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Portelli, G., Ruffier, F. & Franceschini, N. Honeybees change their height to restore optic flow. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 196, 307–313 (2010).

    Article  PubMed  Google Scholar 

  48. Straw, A. D., Serin, L. & Dickinson, M. H. Visual control of altitude in flying Drosophila. Curr. Biol. 20, 1550–1556 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Egelhaaf, M. & Borst, A. A look into the cockpit of the fly: visual orientation, algorithms, and identified neurons. J. Neurosci. 13, 4563–4574 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wagner, H. Flow-field variables trigger landing in flies. Nature 297, 147–148 (1982).

    Article  ADS  Google Scholar 

  51. Baird, E., Boeddeker, N., Ibbotson, M. R. & Srinivasan, M. V. A universal strategy for visually guided landing. Proc. Natl Acad. Sci. USA 110, 18686–18691 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Taylor, G. K. & Krapp, H. G. Sensory systems and flight stability: what do insects measure and why? Adv. Insect Physiol. 34, 231–316 (2007).

    Article  Google Scholar 

  53. Chahl, J. S., Srinivasan, M. V. & Zhang, S. W. Landing strategies in honeybees and applications to uninhabited airborne vehicles. Int. J. Robot. Res. 23, 101–110 (2004).

    Article  Google Scholar 

  54. Garratt, M. A. & Chahl, J. S. Vision-based terrain following for an unmanned rotorcraft. J. Field Robot. 25, 284–301 (2008).

    Article  Google Scholar 

  55. Griffiths, S. et al. Maximizing miniature aerial vehicles. IEEE Robot. Autom. Mag. 13, 34–43 (2006).

    Article  Google Scholar 

  56. Zufferey, J.-C., Klaptocz, A., Beyeler, A., Nicoud, J.-D. & Floreano, D. A 10-gram vision-based flying robot. Adv. Robot. 21, 1671–1684 (2007).

    Article  Google Scholar 

  57. Beyeler, A., Zufferey, J.-C. & Floreano, D. Vision-based control of near-obstacle flight. Auton. Robots 27, 201–219 (2009).

    Article  Google Scholar 

  58. Chan, W. P., Prete, F. & Dickinson, M. H. Visual input to the efferent control system of a fly's “gyroscope”. Science 280, 289–292 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Collett, T. S. Some operating rules for the optomotor system of a hoverfly during voluntary flight. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 138, 271–282 (1980).

    Article  Google Scholar 

  60. Baird, E., Srinivasan, M. V., Zhang, S. & Cowling, A. Visual control of flight speed in honeybees. J. Exp. Biol. 208, 3895–3905 (2005).

    Article  PubMed  Google Scholar 

  61. Ruffier, F. & Franceschini, N. Optic flow regulation: the key to aircraft automatic guidance. Robot. Auton. Syst. 50, 177–194 (2005).

    Article  Google Scholar 

  62. Roubieu, F. L. et al. A biomimetic vision-based hovercraft accounts for bees' complex behaviour in various corridors. Bioinspir. Biomim. 9, 036003 (2014).

    Article  ADS  PubMed  Google Scholar 

  63. Conroy, J., Gremillion, G., Ranganathan, B. & Humbert, S. J. Implementation of wide-field integration of optic flow for autonomous quadrotor navigation. Auton. Robots 27, 189–198 (2009).

    Article  Google Scholar 

  64. Briod, A., Zufferey, J.-C. & Floreano, D. Optic-flow based control of a 46 g quadrotor. In Proc. Workshop on Vision-based Closed-Loop Control and Navigation of Micro Helicopters in GPS-denied Environments http://rpg.ifi.uzh.ch/IROS13_TOC.html (2013).

    Google Scholar 

  65. Schuppe, H. & Hengstenberg, R. Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 173, 143–149 (1993).

    Article  Google Scholar 

  66. Fuller, S. B., Karpelson, M., Censi, A., Ma, K. Y. & Wood, R. J. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. J. R. Soc. Interface 11, 20140281 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gremillion, G., Humbert, J. S. & Krapp, H. G. Bio-inspired modeling and implementation of the ocelli visual system of flying insects. Biol. Cybern. 108, 735–746 (2014).

    Article  MathSciNet  PubMed  Google Scholar 

  68. Ruffier, F. & Franceschini, N. Optic flow regulation in unsteady environments: a tethered MAV achieves terrain following and targeted landing over a moving platform. J. Intell. Robot. Syst. http://dx.doi.org/10.1007/s10846-014-0062-5 (2014).

  69. Ruffier, F., Viollet, S., Amic, S. & Franceschini, N. Bio-inspired optical flow circuits for the visual guidance of micro air vehicles. In Proc. International Symposium on Circuits and Systems 3, 846–849 (2003).

    Google Scholar 

  70. Duhamel, P.-E. J., Pérez-Arancibia, N. O., Barrows, G. & Wood, R. J. Biologically inspired optical-flow sensing for altitude control of flapping-wing microrobots. IEEE Trans. Mechatron. 18, 556–568 (2013).

    Article  Google Scholar 

  71. Floreano, D. et al. Miniature curved artificial compound eyes. Proc. Natl Acad. Sci. USA 110, 9267–9272 (2013).

    Article  CAS  Google Scholar 

  72. Song, Y. M. et al. Digital cameras with designs inspired by the arthropod eye. Nature 497, 95–99 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Zufferey, J. C. et al. Aerial collective systems. In Handbook of Collective Robotics (ed. Kernbach, S.) 609–660 (CRC, 2013). This chapter provides an introduction and survey of collective aerial vehicles.

    Google Scholar 

  74. Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study. Proc. Natl Acad. Sci. USA 105, 1232–1237 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nagy, M., Akos, Z., Biro, D. & Vicsek, T. Hierarchical group dynamics in pigeon flocks. Nature 464, 890–893 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  76. Reynolds, C. W. Flocks, herds, and schools: a distributed behavioral model. Comput. Graph. 21, 25–34 (1987).

    Article  Google Scholar 

  77. Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Roberts, J., Stirling, T., Zufferey, J.-C. & Floreano, D. 3-D relative positioning sensor for indoor flying robots. Auton. Robots 33, 5–20 (2012).

    Article  Google Scholar 

  79. Hauert, S. et al. Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate. In Proc. International Conference on Robots and Systems 5015–5020 (2011).

    Google Scholar 

  80. Virágh, C. et al. Flocking algorithm for autonomous flying robots. Bioinspir. Biomim. 9, 025012 (2014).

    Article  ADS  PubMed  Google Scholar 

  81. Basiri, M., Schill, F. S., Floreano, D. & Lima, P. Audio-based localization for swarms of micro air vehicles. In Proc. International Conference on Robotics and Automation http://infoscience.epfl.ch/record/196274 (2014).

    Google Scholar 

  82. Scaramuzza, D. & Fraundorfer, F. Visual odometry: part I — the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18, 80–92 (2011).

    Article  Google Scholar 

  83. Fraundorfer, F. & Scaramuzza, D. Visual odometry: part II — matching, robustness, and applications. IEEE Robot. Autom. Mag. 19, 78–90 (2012).

    Article  Google Scholar 

  84. Davison, A. J. & Murray, D. W. Simultaneous localization and map-building using active vision. IEEE Trans. Pattern Anal. Mach. Intell. 24, 865–880 (2002).

    Article  Google Scholar 

  85. Bachrach, A., He, R. & Roy, N. Autonomous flight in unknown indoor environments. Inter. J. Micro Air Vehicles 1, 217–228 (2009).

    Article  Google Scholar 

  86. Scaramuzza, D. et al. Vision-controlled micro flying robots: from system design to autonomous navigation and mapping in GPS-denied environments. IEEE Robot. Autom. Mag. 21, 26–40 (2014). This paper details the development of a drone capable of outdoor simultaneous localization and mapping without GPS.

    Article  Google Scholar 

  87. de Wagter, C., Tijmons, S., Remes, B. D. W. & de Croon, G. C. H. E. Autonomous flight of a 20-gram flapping wing MAV with a 4-gram onboard stereo vision system. In Proc. International Conference on Intelligent Robots and Systems 4982–4987 (2014).

    Google Scholar 

  88. Heng, L. et al. Autonomous visual mapping and exploration with a micro aerial vehicle. J. Field Robot. 31, 654–675 (2014).

    Article  Google Scholar 

  89. Schauwecker, K. & Zell, A. On-board dual-stereo-vision for the navigation of an autonomous MAV. J. Intell. Robot. Syst. 74, 1–16 (2014).

    Article  Google Scholar 

  90. Kendoul, F., Fantoni, I. & Nonami, K. Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles. Robot. Auton. Syst. 57, 591–602 (2009).

    Article  Google Scholar 

  91. US Department of Transportation. Integration of Civil Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) Roadmap (US Department of Transportation Federal Aviation Authority, 2013).

  92. UK Civil Aviation Authority. Unmanned Aircraft System Operations in UK Airspace — Guidance. Report CAP 722 (UK Civil Aviation Authority, 2012).

  93. Ministère de l'Ecologie, du Developpement Durable, des Transports et du Logement. Relatif à l'utilisation de l'espace aérien par les aéronefs qui circulent sans personne à bord [in French]. Report No. Texte 9 sur 308, (Ministère de l'Ecologie, du Developpement Durable, des Transports et du Logement, 2012).

  94. Swiss Federal Office of Civil Aviation. Drones and aircraft models http://www.bazl.admin.ch/dienstleistungen/02658/index.html?lang=en (Swiss Federal Office of Civil Aviation, 2014).

  95. European RPAS Steering Group. Roadmap for the Integration of Civil Remotely-Piloted Aircraft Systems into the European Aviation System http://ec.europa.eu/enterprise/sectors/aerospace/uas/ (European RPAS Steering Group, 2013).

  96. European Commission. A New Era for Aviation: Opening the Aviation Market to the Civil Use of Remotely Piloted Aircraft Systems in a Safe and Sustainable Manner. Report COM (2014) 207 (European Commission, 2014).

  97. Haddon, D. R. & Whittaker, C. J. Aircraft airworthiness certification standards for civil UAVs. Aeronaut. J. 107, 79–86 (2003).

    Google Scholar 

  98. International Organization for Standardization. Robots and robotic devices — vocabulary ISO 8373:2012 (International Organization for Standardization, 2012).

Download references

Acknowledgements

D.F. and R.J.W. thank the Wyss Institute for Biologically Inspired Engineering at Harvard University, where this Review was written. D.F. also thanks the Swiss National Science Foundation through the National Centre of Competence in Research Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Floreano.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Floreano, D., Wood, R. Science, technology and the future of small autonomous drones. Nature 521, 460–466 (2015). https://doi.org/10.1038/nature14542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14542

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing