Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The changing form of Antarctic biodiversity



Antarctic biodiversity is much more extensive, ecologically diverse and biogeographically structured than previously thought. Understanding of how this diversity is distributed in marine and terrestrial systems, the mechanisms underlying its spatial variation, and the significance of the microbiota is growing rapidly. Broadly recognizable drivers of diversity variation include energy availability and historical refugia. The impacts of local human activities and global environmental change nonetheless pose challenges to the current and future understanding of Antarctic biodiversity. Life in the Antarctic and the Southern Ocean is surprisingly rich, and as much at risk from environmental change as it is elsewhere.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The Antarctic region is neither as isolated nor as depauperate in biodiversity as once thought.


  1. 1

    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000)

    CAS  Article  Google Scholar 

  2. 2

    Belanger, C. L. et al. Global environmental predictors of benthic marine biogeographic structure. Proc. Natl Acad. Sci. USA 109, 14046–14051 (2012)

    CAS  PubMed  Article  ADS  Google Scholar 

  3. 3

    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1256688 (2014)

    Article  CAS  Google Scholar 

  4. 4

    Barberán, A., Casamayor, E. O. & Fierer, N. The microbial contribution to macroecology. Front. Microbiol. 5, 203 (2014)

    PubMed  PubMed Central  Article  Google Scholar 

  5. 5

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Wilkins, D. et al. Key microbial drivers in Antarctic aquatic environments. FEMS Microbiol. Rev. 37, 303–335 (2013)

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Convey, P. et al. The spatial structure of Antarctic biodiversity. Ecol. Monogr. 84, 203–244 (2014)

    Article  Google Scholar 

  8. 8

    Turner, J. et al. Antarctic climate change and the environment: an update. Polar Rec. (Gr. Brit.) 50, 237–259 (2014)

    Article  Google Scholar 

  9. 9

    Tin, T. et al. Impacts of local human activities on the Antarctic environment. Antarct. Sci. 21, 3–33 (2009)

    Article  ADS  Google Scholar 

  10. 10

    Ainley, D. G. & Pauly, D. Fishing down the food web of the Antarctic continental shelf and slope. Polar Rec. (Gr. Brit.) 50, 92–107 (2014)

    Article  Google Scholar 

  11. 11

    Constable, A. J. et al. Climate change and Southern Ocean ecosystems I: how changes in physical habitats directly affect marine biota. Glob. Change Biol. 20, 3004–3025 (2014)

    Article  ADS  Google Scholar 

  12. 12

    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nature Commun. 5, 4318 (2014)

    CAS  Article  ADS  Google Scholar 

  13. 13

    Brandt, A. et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447, 307–311 (2007)This study of benthic diversity challenged the notion that deep-sea diversity is depressed in the Southern Ocean, with its findings borne out by recent comprehensive surveys.

    CAS  PubMed  Article  ADS  Google Scholar 

  14. 14

    De Broyer, C. et al. Biogeographic Atlas of the Southern Ocean (Scientific Committee on Antarctic Research, 2014)

    Google Scholar 

  15. 15

    López-Bueno, A. et al. High diversity of the viral community from an Antarctic lake. Science 326, 858–861 (2009)This study showed that an Antarctic lake viral community has high genetic richness distributed across the highest number of viral families found in aquatic viral genomes, with a substantial proportion of sequences related to eukaryotic viruses, unlike the situation for other aquatic viromes.

    PubMed  Article  ADS  CAS  Google Scholar 

  16. 16

    Casanovas, P., Lynch, H. J. & Fagan, W. F. Multi-scale patterns of moss and lichen richness on the Antarctic Peninsula. Ecography 36, 209–219 (2013)

    Article  Google Scholar 

  17. 17

    Kennicutt, M. C. II et al. Six priorities for Antarctic science. Nature 512, 23–25 (2014)

    CAS  PubMed  Article  ADS  Google Scholar 

  18. 18

    Janosik, A. M. & Halanych, K. M. Unrecognized Antarctic biodiversity: a case study of the genus Odontaster (Odontasteridae; Asteroidea). Integr. Comp. Biol. 50, 981–992 (2010)

    PubMed  Article  Google Scholar 

  19. 19

    Kaiser, S. et al. Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Mar. Biol. 160, 2295–2317 (2013)

    Article  Google Scholar 

  20. 20

    Halanych, K. M., Cannon, J. T., Mahon, A. R., Swalla, B. J. & Smith, C. R. Modern Antarctic acorn worms form tubes. Nature Commun. 4, 2738 (2013)

    Article  ADS  CAS  Google Scholar 

  21. 21

    Clarke, A. in Marine Macroecology (eds Witman, J. D. & Roy, K. ) 250–278 (University of Chicago Press, 2009)

    Book  Google Scholar 

  22. 22

    Davies, R. G., Irlich, U. M., Chown, S. L. & Gaston, K. J. Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds. Glob. Ecol. Biogeogr. 19, 98–110 (2010)

    Article  Google Scholar 

  23. 23

    Rogers, A. D. et al. The discovery of new deep-sea hydrothermal vent communities in the Southern Ocean and implications for biogeography. PLoS Biol. 10, e1001234 (2012)This study showed that the fauna of deep-sea hydrothermal vents on the East Scotia Ridge in the Southern Ocean is wholly different to vent faunas elsewhere, demonstrating that Antarctic endemicity extends to these faunas.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24

    Petersen, J. M. et al. Hydrogen is an energy source for hydrothermal vent symbioses. Nature 476, 176–180 (2011)

    CAS  PubMed  Article  ADS  Google Scholar 

  25. 25

    Crame, J. A. Early Cenozoic differentiation of polar marine faunas. PLoS ONE 8, e54139 (2013)

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  26. 26

    Marshall, D. J., Krug, P. J., Kupriyanova, E. K., Byrne, M. & Emlet, R. B. The biogeography of marine invertebrate life histories. Annu. Rev. Ecol. Evol. Syst. 43, 97–114 (2012)

    Article  Google Scholar 

  27. 27

    Havermans, C., Nagy, Z. T., Sonet, G., De Broyer, C. & Martin, P. DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea). Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 230–241 (2011)

    CAS  Article  ADS  Google Scholar 

  28. 28

    Raupach, M. J., Malyutina, M., Brandt, A. & Wägele, J.-W. Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 54, 1820–1830 (2007)

    Article  ADS  Google Scholar 

  29. 29

    Wilson, N. G., Hunter, R. L., Lockhart, S. J. & Halanych, K. M. Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar. Biol. 152, 895–904 (2007)This broad-scale study challenges the generalization that many Antarctic species have circumpolar distributions, instead suggesting that much unrecognized diversity and geographic structure exists in the Antarctic biota.

    Article  Google Scholar 

  30. 30

    Wilson, N. G., Maschek, J. A. & Baker, B. J. A species flock driven by predation? Secondary metabolites support diversification of slugs in Antarctica. PLoS ONE 8, e80277 (2013)

    PubMed  PubMed Central  Article  ADS  CAS  Google Scholar 

  31. 31

    Lecointre, G. et al. Is the species flock concept operational? The Antarctic shelf case. PLoS ONE 8, e68787 (2013)

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  32. 32

    Near, T. J. et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl Acad. Sci. USA 109, 3434–3439 (2012)This study showed that although antifreeze was acquired early in the evolution of notothenioid fishes in Antarctica, the main burst of diversification was much more recent, probably during the Late Miocene cooling.

    CAS  PubMed  Article  ADS  Google Scholar 

  33. 33

    Cziko, P. A., DeVries, A. L., Evans, C. W. & Cheng, C. H. C. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc. Natl Acad. Sci. USA 111, 14583–14588 (2014)

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  34. 34

    Thatje, S., Hillenbrand, C.-D., Mackensen, A. & Larter, R. Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89, 682–692 (2008)

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35

    Rogers, A. D. in Antarctic Ecosystems. An Extreme Environment in a Changing World (eds Rogers, A. D., Johnston, N. M., Murphy, E. J. & Clarke, A. ) 417–467 (Wiley-Blackwell, 2012)

    Book  Google Scholar 

  36. 36

    Allcock, A. L. & Strugnell, J. M. Southern Ocean diversity: new paradigms from molecular ecology. Trends Ecol. Evol. 27, 520–528 (2012)

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Barnes, D. K. A. & Hillenbrand, C.-D. Faunal evidence for a late Quaternary trans-Antarctic seaway. Glob. Change Biol. 16, 3297–3303 (2010)This ecological study showed striking similarities in bryozoan assemblages in the Weddell and Ross Seas, supporting the hypothesis that partial collapse of the West Antarctic Ice Sheet during Pleistocene interglacials created a trans-Antarctic seaway.

    Article  ADS  Google Scholar 

  38. 38

    Pierrat, B., Saucède, T., Brayard, A., David, B. & Crame, A. Comparative biogeography of echinoids, bivalves and gastropods from the Southern Ocean. J. Biogeogr. 40, 1374–1385 (2013)

    Article  Google Scholar 

  39. 39

    Peat, H. J., Clarke, A. & Convey, P. Diversity and biogeography of the Antarctic flora. J. Biogeogr. 34, 132–146 (2007)

    Article  Google Scholar 

  40. 40

    Stevens, M. I. & Hogg, I. D. in Trends in Antarctic Terrestrial and Limnetic Ecosystems (eds Bergstrom, D. M., Convey, P. & Huiskes, A. H. L. ) 177–192 (Springer, 2006)

    Book  Google Scholar 

  41. 41

    Velasco-Castrillón, A., Gibson, J. A. E. & Stevens, M. I. A review of current Antarctic limno-terrestrial microfauna. Polar Biol. 37, 1517–1531 (2014)

    Article  Google Scholar 

  42. 42

    Velasco-Castrillón, A. & Stevens, M. I. Morphological and molecular diversity at a regional scale: a step closer to understanding Antarctic nematode biogeography. Soil Biol. Biochem. 70, 272–284 (2014)

    Article  CAS  Google Scholar 

  43. 43

    Torricelli, G. et al. High divergence across the whole mitochondrial genome in the “pan-Antarctic” springtail Friesea grisea: evidence for cryptic species? Gene 449, 30–40 (2010)

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Terauds, A. et al. Conservation biogeography of the Antarctic. Divers. Distrib. 18, 726–741 (2012)

    Article  Google Scholar 

  45. 45

    Pisa, S. et al. The cosmopolitan moss Bryum argenteum in Antarctica: recent colonisation or in situ survival? Polar Biol. 37, 1469–1477 (2014)

    Article  Google Scholar 

  46. 46

    McGaughran, A., Stevens, M. I., Hogg, I. D. & Carapelli, A. Extreme glacial legacies: a synthesis of the Antarctic springtail phylogeographic record. Insects 2, 62–82 (2011)

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Vyverman, W. et al. Evidence for widespread endemism among Antarctic micro-organisms. Polar Sci. 4, 103–113 (2010)

    Article  ADS  Google Scholar 

  48. 48

    Zablocki, O. et al. High-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of Antarctic soils. Appl. Environ. Microbiol. 80, 6888–6897 (2014)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49

    Yergeau, E. et al. Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient. FEMS Microbiol. Ecol. 59, 436–451 (2007)

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Cary, S. C., McDonald, I. R., Barrett, J. E. & Cowan, D. A. On the rocks: the microbiology of Antarctic Dry Valley soils. Nature Rev. Microbiol. 8, 129–138 (2010)

    CAS  Article  Google Scholar 

  51. 51

    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012)

    CAS  PubMed  Article  ADS  Google Scholar 

  52. 52

    Lee, C. K., Barbier, B. A., Bottos, E. M., McDonald, I. R. & Cary, S. C. The inter-valley soil comparative survey: the ecology of Dry Valley edaphic microbial communities. ISME J. 6, 1046–1057 (2012)

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Chan, Y., Van Nostrand, J. D., Zhou, J., Pointing, S. B. & Farrell, R. L. Functional ecology of an Antarctic Dry Valley. Proc. Natl Acad. Sci. USA 110, 8990–8995 (2013)This study showed, using a metagenomic approach, significant plasticity in autotrophic, diazotrophic and heterotrophic strategies which support microbial communities in the Antarctic Dry Valleys.

    CAS  PubMed  Article  ADS  Google Scholar 

  54. 54

    Laybourn-Parry, J. & Pearce, D. A. The biodiversity and ecology of Antarctic lakes: models for evolution. Phil. Trans. R. Soc. B 362, 2273–2289 (2007)

    CAS  PubMed  Article  Google Scholar 

  55. 55

    Anesio, A. M. & Bellas, C. M. Are low temperature habitats hot spots of microbial evolution driven by viruses? Trends Microbiol. 19, 52–57 (2011)

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Varin, T., Lovejoy, C., Jungblut, A. D., Vincent, W. F. & Corbeil, J. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Appl. Environ. Microbiol. 78, 549–559 (2012)

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57

    Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 512, 310–313 (2014)This study showed that subglacial Lake Whillans, which lies below 800 m of ice, has a diverse, chemosynthetically driven assemblage of Bacteria and Archaea, thus verifying the existence of deep, subglacial life.

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Pennycuick, C. J. in Comparative Physiology: Life in Water and on Land, Vol. 9 (eds Dejours, P., Bolis, L., Taylor, C. R. & Weibel, E. R. ) 371–386 (Liviana Press, 1987)

    Google Scholar 

  59. 59

    Weimerskirch, H., Louzao, M., de Grissac, S. & Delord, K. Changes in wind pattern alter albatross distribution and life-history traits. Science 335, 211–214 (2012)

    CAS  PubMed  Article  ADS  Google Scholar 

  60. 60

    Green, T. G. A., Sancho, L. G., Pintado, A. & Schroeter, B. Functional and spatial pressures on terrestrial vegetation in Antarctica forced by global warming. Polar Biol. 34, 1643–1656 (2011)

    Article  Google Scholar 

  61. 61

    Fraser, C. I., Terauds, A., Smellie, J., Convey, P. & Chown, S. L. Geothermal activity helps life survive glacial cycles. Proc. Natl Acad. Sci. USA 111, 5634–5639 (2014)

    CAS  PubMed  Article  ADS  Google Scholar 

  62. 62

    Hawes, T. C. Antarctica's geological arks of life. J. Biogeogr. 42, 207–208 (2015)

    Article  Google Scholar 

  63. 63

    Barrett, J. E. et al. Co-variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica. Antarct. Sci. 18, 535–548 (2006)

    Article  ADS  Google Scholar 

  64. 64

    Pointing, S. B. et al. Highly specialized microbial diversity in hyper-arid polar desert. Proc. Natl Acad. Sci. USA 106, 19964–19969 (2009)This study showed that considerable microbial diversity exists as four distinct communities, including three lithic ones, in the hyper-arid Antarctic Dry Valleys.

    CAS  PubMed  Article  ADS  Google Scholar 

  65. 65

    Pearce, D. A. et al. Microorganisms in the atmosphere over Antarctica. FEMS Microbiol. Ecol. 69, 143–157 (2009)

    CAS  PubMed  Article  Google Scholar 

  66. 66

    Herbold, C. W., Lee, C. K., McDonald, I. R. & Cary, S. C. Evidence of global-scale aeolian dispersal and endemism in isolated geothermal microbial communities of Antarctica. Nature Commun. 5, 3875 (2014)

    CAS  Article  ADS  Google Scholar 

  67. 67

    Gordon, D. A., Priscu, J. & Giovannoni, S. Origin and phylogeny of microbes living in permanent Antarctic lake ice. Microb. Ecol. 39, 197–202 (2000)

    PubMed  Google Scholar 

  68. 68

    Archer, S. D., McDonald, I. R., Herbold, C. W. & Cary, S. C. Characterisation of bacterioplankton communities in the meltwater ponds of Bratina Island, Victoria Land, Antarctica. FEMS Microbiol. Ecol. 89, 451–464 (2014)

    CAS  PubMed  Article  Google Scholar 

  69. 69

    Bowman, J. P., McCammon, S. A., Rea, S. M. & McMeekin, T. A. The microbial composition of three limnologically disparate hypersaline Antarctic lakes. FEMS Microbiol. Lett. 183, 81–88 (2000)

    CAS  PubMed  Article  Google Scholar 

  70. 70

    Villaescusa, J. A. et al. A close link between bacterial community composition and environmental heterogeneity in maritime Antarctic lakes. Int. Microbiol. 13, 67–77 (2010)

    CAS  PubMed  Google Scholar 

  71. 71

    Lauro, F. M. et al. An integrative study of a meromictic lake ecosystem in Antarctica. ISME J. 5, 879–895 (2011)

    CAS  PubMed  Article  Google Scholar 

  72. 72

    Bielewicz, S. et al. Protist diversity in a permanently ice-covered Antarctic lake during the polar night transition. ISME J. 5, 1559–1564 (2011)

    PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D. & Zhang, Z.-S. Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current. Paleoceanography 27, PA4201 (2012)

    Article  ADS  Google Scholar 

  74. 74

    Leese, F., Agrawal, S. & Held, C. Long-distance island hopping without dispersal stages: transportation across major zoogeographic barriers in a Southern Ocean isopod. Naturwissenschaften 97, 583–594 (2010)

    CAS  Article  ADS  Google Scholar 

  75. 75

    Fraser, C. I., Nikula, R., Ruzzante, D. E. & Waters, J. M. Poleward bound: biological impacts of Southern Hemisphere glaciation. Trends Ecol. Evol. 27, 462–471 (2012)

    PubMed  Article  Google Scholar 

  76. 76

    Thornhill, D. J., Mahon, A. R., Norenburg, J. L. & Halanych, K. M. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol. Ecol. 17, 5104–5117 (2008)

    CAS  PubMed  Article  Google Scholar 

  77. 77

    Poulin, E., González-Wevar, C., Díaz, A., Gérard, K. & Hüne, M. Divergence between Antarctic and South American marine invertebrates: what molecular biology tells us about Scotia Arc geodynamics and the intensification of the Antarctic Circumpolar Current. Global Planet. Change 123, 392–399 (2014)

    Article  ADS  Google Scholar 

  78. 78

    Page, T. J. & Linse, K. More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol. 25, 818–826 (2002)

    Google Scholar 

  79. 79

    Wilson, N. G., Schrodl, M. & Halanych, K. M. Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia). Mol. Ecol. 18, 965–984 (2009)

    PubMed  Article  Google Scholar 

  80. 80

    Díaz, A., Féral, J. P., David, B., Saucède, T. & Poulin, E. Evolutionary pathways among shallow and deep-sea echinoids of the genus Sterechinus in the Southern Ocean. Deep Sea Res. Part II Top. Stud. Oceanogr. 58, 205–211 (2011)

    Article  ADS  Google Scholar 

  81. 81

    O’Hara, T. D., Smith, P. J., Mills, V. S., Smirnov, I. & Steinke, D. Biogeographical and phylogeographical relationships of the bathyal ophiuroid fauna of the Macquarie Ridge, Southern Ocean. Polar Biol. 36, 321–333 (2013)

    Article  Google Scholar 

  82. 82

    Hunter, R. L. & Halanych, K. M. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J. Hered. 99, 137–148 (2008)

    CAS  PubMed  Article  Google Scholar 

  83. 83

    Barnes, D. K. A., Hodgson, D. A., Convey, P., Allen, C. S. & Clarke, A. Incursion and excursion of Antarctic biota: past, present and future. Glob. Ecol. Biogeogr. 15, 121–142 (2006)

    Article  Google Scholar 

  84. 84

    Huiskes, A. H. L. et al. Aliens in Antarctica: assessing transfer of plant propagules by human visitors to reduce invasion risk. Biol. Conserv. 171, 278–284 (2014)

    Article  Google Scholar 

  85. 85

    Molina-Montenegro, M. A. et al. Assessing the importance of human activities for the establishment of the invasive Poa annua in Antarctica. Polar Res. 33, 21425 (2014)

    Article  Google Scholar 

  86. 86

    Volonterio, O., de León, R. P., Convey, P. & Krzemińska, E. First record of Trichoceridae (Diptera) in the maritime Antarctic. Polar Biol. 36, 1125–1131 (2013)

    Article  Google Scholar 

  87. 87

    Lewis, P. N., Riddle, M. & Hewitt, C. L. Management of exogenous threats to Antarctica and the sub-Antarctic Islands: balancing the risks from TBT and non-indigenous marine organisms. Mar. Pollut. Bull. 49, 999–1005 (2004)This study showed that a diverse fouling community can be transported to Antarctica on the hulls of research vessels, though sea-ice may reduce the numbers of organisms being transported.

    CAS  PubMed  Article  Google Scholar 

  88. 88

    Aronson, R. B., Frederich, M., Price, R. & Thatje, S. Prospects for the return of shell-crushing crabs to Antarctica. J. Biogeogr. 42, 1–7 (2015)

    Article  Google Scholar 

  89. 89

    Griffiths, H. J., Whittle, R. J., Roberts, S. J., Belchier, M. & Linse, K. Antarctic crabs: invasion or endurance? PLoS ONE 8, e66981 (2013)

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  90. 90

    Berkman, P. A., Lang, M. A., Walton, D. W. H., Young, O. R. (eds) Science Diplomacy. Antarctica, Science, and the Governance of International Spaces. (Smithsonian Institution, 2011)

    Google Scholar 

  91. 91

    Convention on Biological Diversity. National Biodiversity Strategy and Action Plans. (2015)

  92. 92

    Shaw, J. D., Terauds, A., Riddle, M. J., Possingham, H. P. & Chown, S. L. Antarctica's protected areas are inadequate, unrepresentative, and at risk. PLoS Biol. 12, e1001888 (2014)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. 93

    Hughes, K. A. & Convey, P. The protection of Antarctic terrestrial ecosystems from inter- and intra-continental transfer of non-indigenous species by human activities: a review of current systems and practices. Glob. Environ. Change 20, 96–112 (2010)

    Article  Google Scholar 

  94. 94

    Braun, C. et al. in Antarctic Futures. Human Engagement with the Antarctic Environment (eds Tin, T., Liggett, D., Maher, P. T. & Lamers, M. ) 169–191 (Springer, 2014)

  95. 95

    CEP (Committee for Environmental Protection). Non-native species manual. (2011)

  96. 96

    Nielsen, U. N. & Wall, D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic? Ecol. Lett. 16, 409–419 (2013)

    PubMed  Article  Google Scholar 

  97. 97

    Smith, W. O. Jr, Ainley, D. G., Arrigo, K. R. & Dinniman, M. S. The oceanography and ecology of the Ross Sea. Annu. Rev. Mar. Sci. 6, 469–487 (2014)

    Article  ADS  Google Scholar 

  98. 98

    Ainley, D. G. et al. Decadal trends in abundance, size and condition of Antarctic toothfish in McMurdo Sound, Antarctica, 1972–2011. Fish Fish. 14, 343–363 (2013)

    Article  Google Scholar 

  99. 99

    Brady, A.-M., ed. The Emerging Politics of Antarctica (Routledge, 2013)

    Google Scholar 

  100. 100

    Puig-Marcó, R. Access and benefit sharing of Antarctica's biological material. Mar. Genomics 17, 73–78 (2014)

    PubMed  Article  Google Scholar 

  101. 101

    Wan, E. et al. Green technologies for room temperature nucleic acid storage. Curr. Issues Mol. Biol. 12, 135–142 (2010)

    CAS  PubMed  Google Scholar 

  102. 102

    Fretwell, P. T. et al. An emperor penguin population estimate: the first global, synoptic survey of a species from space. PLoS ONE 7, e33751 (2012)This study showed that a synoptic survey of the entire population of an important Antarctic species, the Emperor Penguin, can be undertaken for a single year by satellite remote sensing, with the numbers of breeding pairs estimated increasing over previous counts by >50,000.

    CAS  PubMed  PubMed Central  Article  ADS  Google Scholar 

  103. 103

    Shin, J.-I., Kim, H.-C., Kim, S.-I. & Hong, S. G. Vegetation abundance on the Barton Peninsula, Antarctica: estimation from high-resolution satellite images. Polar Biol. 37, 1579–1588 (2014)

    Article  Google Scholar 

  104. 104

    van Dorst, J. et al. Community fingerprinting in a sequencing world. FEMS Microbiol. Ecol. 89, 316–330 (2014)

    CAS  PubMed  Article  Google Scholar 

  105. 105

    Lynch, H. J., Naveen, R., Trathan, P. N. & Fagan, W. J. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012)

    PubMed  Article  Google Scholar 

  106. 106

    Peck, L. S. & Clark, M. S. in Adaptation and Evolution in Marine Environments, Volume 1 (eds di Prisco, G. & Verde, C. ) 157–182 (Springer, 2012)

    Book  Google Scholar 

  107. 107

    Bednaršek, N. et al. Extensive dissolution of live pteropods in the Southern Ocean. Nat. Geosci. 5, 881–885 (2012)

    Article  ADS  CAS  Google Scholar 

  108. 108

    Kawaguchi, S. et al. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nature Climate Change 3, 843–847 (2013)

    CAS  Article  ADS  Google Scholar 

  109. 109

    Ansorge, I. J. & Lutjeharms, J. R. E. Eddies originating at the South-West Indian Ridge. J. Mar. Syst. 39, 1–18 (2003)

    Article  Google Scholar 

  110. 110

    Fretwell, P. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013)

    Article  ADS  Google Scholar 

Download references


This work was supported by Australian Research Council grants DP140102815 to S.L.C. and DP150103017 to M.A.M., an Australian Research Council Discovery Early Career Fellowship DE140101715 to C.I.F., grants from the New Zealand Antarctic Research Institute, New Zealand Marsden Fund and the US National Science Foundation to S.C.C., and emeritus support from the British Antarctic Survey to A.C. We thank D. J. Marshall, C. Lee and H. W. Morgan for comments that improved the work.

Author information




S.L.C., S.C.C. and M.A.M. conceived the work; C.I.F conceptualized and drew the figures; all authors contributed equally to the planning and writing of the manuscript.

Corresponding author

Correspondence to Steven L. Chown.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related audio

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chown, S., Clarke, A., Fraser, C. et al. The changing form of Antarctic biodiversity. Nature 522, 431–438 (2015).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing