Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiple complexation of CO and related ligands to a main-group element


The ability of an atom or molecular fragment to bind multiple carbon monoxide (CO) molecules to form multicarbonyl adducts is a fundamental trait of transition metals. Transition-metal carbonyl complexes are vital to industry, appear naturally in the active sites of a number of enzymes (such as hydrogenases), are promising therapeutic agents1, and have even been observed in interstellar dust clouds2. Despite the wealth of established transition-metal multicarbonyl complexes3, no elements outside groups 4 to 12 of the periodic table have yet been shown to react directly with two or more CO units to form stable multicarbonyl adducts. Here we present the synthesis of a borylene dicarbonyl complex, the first multicarbonyl complex of a main-group element prepared using CO. The compound is additionally stable towards ambient air and moisture. The synthetic strategy used—liberation of a borylene ligand from a transition metal using donor ligands—is broadly applicable, leading to a number of unprecedented monovalent boron species with different Lewis basic groups. The similarity of these compounds to conventional transition-metal carbonyl complexes is demonstrated by photolytic liberation of CO and subsequent intramolecular carbon–carbon bond activation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Synthesis and reactivity of bis(CO), bis(isonitrile) and mixed adducts of boron.
Figure 2: Crystallographic and computational results on the molecules prepared herein.


  1. 1

    Simpson, P. V. & Schatzschneider, U. in Inorganic Chemical Biology: Principles, Techniques and Applications (ed. Gasser, G.) Ch.10, 309–340 (Wiley, 2014)

    Google Scholar 

  2. 2

    Tielens, A. G. G. M., Wooden, D. H., Allamandola, L. J., Bregman, J. & Witteborn, F. C. The infrared spectrum of the galactic center and the composition of interstellar dust. Astrophys. J. 461, 210–222 (1996)

    CAS  ADS  Article  Google Scholar 

  3. 3

    The Cambridge Crystallographic Database., Version 5.35 (Cambridge Crystallographic Data Centre, November 2013)

  4. 4

    Parry, J., Carmona, E., Coles, S. & Hursthouse, M. Synthesis and single crystal X-ray diffraction study on the first isolable carbonyl complex of an actinide, (C5Me4H)3U(CO). J. Am. Chem. Soc. 117, 2649–2650 (1995)

    CAS  Article  Google Scholar 

  5. 5

    Puschmann, F. F. et al. Phosphination of carbon monoxide: a simple synthesis of sodium phosphaethynolate (NaOCP). Angew. Chem. Int. Ed. 50, 8420–8423 (2011)

    CAS  Article  Google Scholar 

  6. 6

    Finze, M. et al. Tris(trifluoromethyl)borane carbonyl, (CF3)3BCO—synthesis, physical, chemical and spectroscopic properties, gas phase, and solid state structure. J. Am. Chem. Soc. 124, 15385–15398 (2002)

    CAS  Article  Google Scholar 

  7. 7

    Glore, J. D., Rathke, J. W. & Schaeffer, R. Some reactions of triborane(7) and the structure of triborane(7)-carbonyl. Inorg. Chem. 12, 2175–2178 (1973)

    CAS  Article  Google Scholar 

  8. 8

    Lavallo, V., Canac, Y., Donnadieu, B., Schoeller, W. W. & Bertrand, G. CO fixation to stable acyclic and cyclic alkyl amino carbenes: stable amino ketenes with a small HOMO–LUMO gap. Angew. Chem. Int. Ed. 45, 3488–3491 (2006)

    CAS  Article  Google Scholar 

  9. 9

    Ellern, A., Drews, T. & Seppelt, K. The structure of carbon suboxide, C3O2, in the solid state. Z. Anorg. Allg. Chem. 627, 73–76 (2001)

    CAS  Article  Google Scholar 

  10. 10

    Bernhardi, I., Drews, T. & Seppelt, K. Isolation and structure of the OCNCO+ ion. Angew. Chem. Int. Ed. 38, 2232–2233 (1999)

    CAS  Article  Google Scholar 

  11. 11

    Power, P. P. Main-group elements as transition metals. Nature 463, 171–177 (2010)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Martin, D., Soleilhavoup, M. & Bertrand, G. Stable singlet carbenes as mimics for transition metal centers. Chem. Sci. 2, 389–399 (2011)

    CAS  Article  Google Scholar 

  13. 13

    Braunschweig, H. et al. Ambient-temperature isolation of a compound with a boron-boron triple bond. Science 336, 1420–1422 (2012)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Wang, Y. & Robinson, G. H. Carbene-stabilized main group diatomic allotropes. Dalton Trans. 41, 337–345 (2012)

    CAS  Article  Google Scholar 

  15. 15

    Khan, S., Sen, S. S. & Roesky, H. W. Activation of phosphorus by group 14 elements in low oxidation states. Chem. Commun. 48, 2169–2179 (2012)

    CAS  Article  Google Scholar 

  16. 16

    Braunschweig, H. et al. Metal-free binding and coupling of carbon monoxide at a boron–boron triple bond. Nature Chem. 5, 1025–1028 (2013)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Spikes, G. H., Fettinger, J. C. & Power, P. P. Facile activation of dihydrogen by an unsaturated heavier main group compound. J. Am. Chem. Soc. 127, 12232–12233 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Frey, G. D., Lavallo, V., Donnadieu, B., Schoeller, W. W. & Bertrand, G. Facile splitting of hydrogen and ammonia by nucleophilic activation at a single carbon center. Science 316, 439–441 (2007)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Tonner, R. & Frenking, G. C(NHC)2: divalent carbon(0) compounds with N-heterocyclic carbene ligands—theoretical evidence for a class of molecules with promising chemical properties. Angew. Chem. Int. Ed. 46, 8695–8698 (2007)

    CAS  Article  Google Scholar 

  20. 20

    Celik, M. A. et al. Borylene complexes (BH)L2 and nitrogen cation complexes (N+)L2: isoelectronic homologues of carbones CL2 . Chemistry 18, 5676–5692 (2012)

    CAS  Article  Google Scholar 

  21. 21

    Kinjo, R., Donnadieu, B., Celik, M. A., Frenking, G. & Bertrand, G. Synthesis and characterization of a neutral tricoordinate organoboron isoelectronic with amines. Science 333, 610–613 (2011)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Ruiz, D. A., Melaimi, M. & Bertrand, G. An efficient synthetic route to stable bis(carbene)borylenes [(L1)(L2)BH]. Chem. Commun. 50, 7837–7839 (2014)

    CAS  Article  Google Scholar 

  23. 23

    Kong, L., Li, Y., Ganguly, R., Vidovic, D. & Kinjo, R. Isolation of a bis(oxazol-2-ylidene)–phenylborylene adduct and its reactivity as a boron-centered nucleophile. Angew. Chem. Int. Ed. 53, 9280–9283 (2014)

    CAS  Article  Google Scholar 

  24. 24

    Dahcheh, F., Martin, D., Stephan, D. W. & Bertrand, G. Synthesis and reactivity of a CAAC–aminoborylene adduct: a hetero-allene or an organoboron isoelectronic with singlet carbenes. Angew. Chem. Int. Ed. 53, 13159–13163 (2014)

    CAS  Article  Google Scholar 

  25. 25

    Mondal, K. C. et al. A stable singlet biradicaloid siladicarbene: (L:)2Si. Angew. Chem. Int. Ed. 52, 2963–2967 (2013)

    CAS  Article  Google Scholar 

  26. 26

    Himmel, D., Krossing, I. & Schnepf, A. Dative bonds in main-group compounds: a case for fewer arrows!. Angew. Chem. Int. Ed. 53, 370–374 (2014)

    CAS  Article  Google Scholar 

  27. 27

    Frenking, G. Dative bonds in main-group compounds: a case for more arrows!. Angew. Chem. Int. Ed. 53, 6040–6046 (2014)

    CAS  Article  Google Scholar 

  28. 28

    Himmel, D., Krossing, I. & Schnepf, A. Dative or not dative? Angew. Chem. Int. Ed. 53, 6047–6048 (2014)

    CAS  Article  Google Scholar 

  29. 29

    Braunschweig, H., Dewhurst, R. D. & Schneider, A. Electron-precise coordination modes of boron-centered ligands. Chem. Rev. 110, 3924–3957 (2010)

    CAS  Article  Google Scholar 

  30. 30

    Grigsby, W. J. & Power, P. P. Isolation and reduction of sterically encumbered arylboron dihalides: novel boranediyl insertion into C−C σ-bonds. J. Am. Chem. Soc. 118, 7981–7988 (1996)

    CAS  Article  Google Scholar 

Download references


This work was supported by a European Research Council Advanced Grant to H.B.

Author information




H.B. conceived and supervised the study. C.W.T., M.N. and Q.Y. performed the synthetic studies. F.H. and K.R. performed the single-crystal X-ray diffraction studies. A.V. performed the computational experiments. R.D.D. wrote the manuscript with input from all authors. All authors analysed the results and commented on the manuscript.

Corresponding author

Correspondence to Holger Braunschweig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Crystallographic data have been deposited with the Cambridge Crystallographic Data Center as supplementary publication numbers CCDC 1049463–1049468. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre at

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-29 and Supplementary References. (PDF 15700 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Braunschweig, H., Dewhurst, R., Hupp, F. et al. Multiple complexation of CO and related ligands to a main-group element. Nature 522, 327–330 (2015).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing