Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Visible-frequency hyperbolic metasurface


Metamaterials are artificial optical media composed of sub-wavelength metallic and dielectric building blocks that feature optical phenomena not present in naturally occurring materials1,2,3,4,5,6,7. Although they can serve as the basis for unique optical devices that mould the flow of light in unconventional ways, three-dimensional metamaterials suffer from extreme propagation losses8,9. Two-dimensional metamaterials (metasurfaces) such as hyperbolic metasurfaces for propagating surface plasmon polaritons10,11 have the potential to alleviate this problem. Because the surface plasmon polaritons are guided at a metal–dielectric interface (rather than passing through metallic components), these hyperbolic metasurfaces have been predicted to suffer much lower propagation loss while still exhibiting optical phenomena akin to those in three-dimensional metamaterials. Moreover, because of their planar nature, these devices enable the construction of integrated metamaterial circuits as well as easy coupling with other optoelectronic elements. Here we report the experimental realization of a visible-frequency hyperbolic metasurface using single-crystal silver nanostructures defined by lithographic and etching techniques. The resulting devices display the characteristic properties of metamaterials, such as negative refraction1,2,3,4,5 and diffraction-free propagation6,7, with device performance greatly exceeding those of previous demonstrations. Moreover, hyperbolic metasurfaces exhibit strong, dispersion-dependent spin–orbit coupling, enabling polarization- and wavelength-dependent routeing of surface plasmon polaritons and two-dimensional chiral optical components12,13,14,15. These results open the door to realizing integrated optical meta-circuits, with wide-ranging applications in areas from imaging and sensing to quantum optics and quantum information science.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-crystalline silver film and fabricated devices.
Figure 2: Measurement of SPP refraction at a flat silver/HMS interface.
Figure 3: Observation of diffraction-free SPP propagation.
Figure 4: The dispersion-dependent plasmonic spin-Hall effect (PSHE).

Similar content being viewed by others


  1. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  ADS  Google Scholar 

  2. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  CAS  ADS  Google Scholar 

  3. Yao, J. et al. Optical negative refraction in bulk metamaterials of nanowires. Science 321, 930 (2008).

    Article  CAS  ADS  Google Scholar 

  4. Naik, G. V. et al. Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials. Proc. Natl Acad. Sci. USA 111, 7546–7551 (2014).

    Article  CAS  ADS  Google Scholar 

  5. Esfandyarpour, M., Garnett, E. C., Cui, Y., McGehee, M. D. & Brongersma, M. L. Metamaterial mirrors in optoelectronic devices. Nature Nanotechnol. 9, 542–547 (2014).

    Article  CAS  ADS  Google Scholar 

  6. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).

    Article  ADS  Google Scholar 

  7. Liu, Z. W., Lee, H., Xiong, Y., Sun, C. & Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).

    Article  CAS  ADS  Google Scholar 

  8. Shalaev, V. M. Optical negative-index metamaterials. Nature Photon. 1, 41–48 (2007).

    Article  CAS  ADS  Google Scholar 

  9. Poddubny, A., Iorsh, I., Belov, P. & Kivshar, Y. Hyperbolic metamaterials. Nature Photon. 7, 948–957 (2013).

    Article  CAS  ADS  Google Scholar 

  10. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  11. Liu, Y. M. & Zhang, X. Metasurfaces for manipulating surface plasmons. Appl. Phys. Lett. 103, 141101 (2013).

    Article  ADS  Google Scholar 

  12. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331–334 (2013).

    Article  CAS  ADS  Google Scholar 

  13. Rodriguez-Fortuno, F. J. et al. Near-field interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328–330 (2013).

    Article  CAS  ADS  Google Scholar 

  14. Kapitanova, P. V. et al. Photonic spin Hall effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nature Commun. 5, 3226 (2014).

    Article  ADS  Google Scholar 

  15. Petersen, J., Volz, J. & Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light. Science 346, 67–71 (2014).

    Article  CAS  ADS  Google Scholar 

  16. Baski, A. A. & Fuchs, H. Epitaxial growth of silver on mica as studied by AFM and STM. Surf. Sci. 313, 275–288 (1994).

    Article  CAS  ADS  Google Scholar 

  17. Park, J. H. et al. Single-crystalline silver films for plasmonics. Adv. Mater. 24, 3988–3992 (2012).

    Article  CAS  Google Scholar 

  18. Johnson, P. B. & Christy, R. W. Optical constants of noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  CAS  ADS  Google Scholar 

  19. Palik, E. D. Handbook of Optical Constants of Solids Vol. 3 353–357 (Academic Press, 1998).

    Google Scholar 

  20. Wu, Y. et al. Intrinsic optical properties and enhanced plasmonic response of epitaxial silver. Adv. Mater. 26, 6106–6110 (2014).

    Article  CAS  Google Scholar 

  21. Fan, X. B., Wang, G. P., Lee, J. C. W. & Chan, C. T. All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration. Phys. Rev. Lett. 97, 073901 (2006).

    Article  ADS  Google Scholar 

  22. Smith, D. R. & Schurig, D. Electromagnetic wave propagation in media with inde finite permittivity and permeability tensors. Phys. Rev. Lett. 90, 077405 (2003).

    Article  CAS  ADS  Google Scholar 

  23. Lee, S. Y. et al. Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons. Phys. Rev. Lett. 108, 213907 (2012).

    Article  ADS  Google Scholar 

  24. Huang, L. L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2, e70 (2013).

    Article  Google Scholar 

  25. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

    Article  ADS  Google Scholar 

  26. Onoda, M., Murakami, S. & Nagaosa, N. Hall effect of light. Phys. Rev. Lett. 93, 083901 (2004).

    Article  ADS  Google Scholar 

  27. Raether, H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings Ch. 1 (Springer, 1988).

    Book  Google Scholar 

  28. Silva, A. et al. Performing mathematical operations with metamaterials. Science 343, 160–163 (2014).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  29. Huang, K. C. Y. et al. Electrically driven subwavelength optical nanocircuits. Nature Photon. 8, 244–249 (2014).

    Article  CAS  ADS  Google Scholar 

  30. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nature Phys. 7, 907–912 (2011).

    Article  CAS  ADS  Google Scholar 

Download references


We acknowledge support from ONR-MURI (FA9550-12-1-0024), NSF-AMO (PHY-0969816), NSF-CUA (PHY-1125846) and DARPA SPARQC (W31P4Q-12-1-0017). We carried out all film deposition and device fabrication at the Harvard Center for Nanoscale Systems. J.P. acknowledges I. R. Hooper for useful discussions.

Author information

Authors and Affiliations



A.A.H. and H.P. conceived the study, and A.A.H., R.C.D., M.D.L. and H.P. designed the experiments. A.A.H., R.C.D., A.D. and N.P.d.L. developed the fabrication procedure. A.A.H., R.C.D., A.D. and M.P. performed experiments. A.A.H., R.C.D., D.S.W. and J.P. performed computational analyses and simulations. A.A.H., R.C.D., D.S.W., J.P., N.P.d.L., M.D.L. and H.P. contributed to theoretical descriptions. A.A.H., R.C.D., D.S.W., J.P., M.D.L. and H.P. wrote the manuscript, with extensive input from all authors.

Corresponding authors

Correspondence to Mikhail D. Lukin or Hongkun Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Methods and Discussion and Supplementary Figures 1-18. (PDF 17183 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

High, A., Devlin, R., Dibos, A. et al. Visible-frequency hyperbolic metasurface. Nature 522, 192–196 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing