Extreme ultraviolet high-harmonic spectroscopy of solids


Extreme ultraviolet (EUV) high-harmonic radiation1,2 emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques3,4,5 and provides insight into fundamental structural and dynamic properties of matter6,7. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments8,9 and theoretical predictions10,11,12 paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation8 in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies9. Here we demonstrate that thin films of SiO2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics5,13,14,15 in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Generation, energy cutoff and intensity scaling of coherent EUV radiation in SiO2 films.
Figure 2: Semiclassical picture of the field-driven electron dynamics in SiO2.
Figure 3: Field control of laser-driven EUV emission in SiO2 (experiment and simulation).
Figure 4: Coherent EUV source characteristics.


  1. 1

    Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).

    CAS  Article  Google Scholar 

  2. 2

    L’Huillier, A. & Balcou, P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).

    ADS  Article  Google Scholar 

  3. 3

    Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).

    ADS  CAS  Article  Google Scholar 

  4. 4

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).

    ADS  CAS  Article  Google Scholar 

  5. 5

    Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).

    ADS  CAS  Article  Google Scholar 

  6. 6

    Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).

    ADS  Article  Google Scholar 

  7. 7

    Remetter, T. et al. Attosecond electron wave packet interferometry. Nature Phys. 2, 323–326 (2006).

    ADS  CAS  Article  Google Scholar 

  8. 8

    Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nature Phys. 7, 138–141 (2011).

    ADS  CAS  Article  Google Scholar 

  9. 9

    Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon. 8, 119–123 (2014).

    ADS  CAS  Article  Google Scholar 

  10. 10

    Feise, M. W. & Citrin, D. S. Semiclassical theory of terahertz multiple-harmonic generation in semiconductor superlattices. Appl. Phys. Lett. 75, 3536–3538 (1999).

    ADS  CAS  Article  Google Scholar 

  11. 11

    Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).

    ADS  Article  Google Scholar 

  12. 12

    Mücke, O. D. Isolated high-order harmonics pulse from two-color-driven Bloch oscillations in bulk semiconductors. Phys. Rev. B 84, 081202 (2011).

    ADS  Article  Google Scholar 

  13. 13

    Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).

    Article  Google Scholar 

  14. 14

    Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).

    ADS  Article  Google Scholar 

  15. 15

    Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).

    ADS  Article  Google Scholar 

  16. 16

    Levenson, M. D. & Kano, S. Introduction to Nonlinear Laser Spectroscopy Revised edn (Academic, 1988).

    Google Scholar 

  17. 17

    Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    ADS  CAS  Article  Google Scholar 

  18. 18

    Keldysh, L. V. Ionization in field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).

    MathSciNet  Google Scholar 

  19. 19

    Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).

    ADS  CAS  Article  Google Scholar 

  20. 20

    Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).

    ADS  CAS  Article  Google Scholar 

  21. 21

    Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).

    ADS  Article  Google Scholar 

  22. 22

    Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).

    ADS  CAS  Article  Google Scholar 

  23. 23

    Hassan, M. T. et al. Attosecond photonics: synthesis and control of light transients. Rev. Sci. Instrum. 83, 111301 (2012).

    ADS  Article  Google Scholar 

  24. 24

    Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    ADS  CAS  Article  Google Scholar 

  25. 25

    Waschke, C. et al. Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 70, 3319–3322 (1993).

    ADS  CAS  Article  Google Scholar 

  26. 26

    Wegener, M. Extreme Nonlinear Optics: An Introduction (Springer, 2005).

    Google Scholar 

  27. 27

    Chelikowsky, J. R. & Schlüter, M. Electron states in α-quartz: a self-consistent pseudopotential calculation. Phys. Rev. B 15, 4020–4029 (1977).

    ADS  CAS  Article  Google Scholar 

  28. 28

    Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. T 109, 61–74 (2004).

    ADS  Article  Google Scholar 

  29. 29

    Cabasse, A., Machinet, G., Dubrouil, A., Cormier, E. & Constant, E. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate. Opt. Lett. 37, 4618–4620 (2012).

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Wismer for support in calculations, and A. Jain for help during experiments. This work was supported by a European Research Council grant (Attoelectronics-258501), the Deutsche Forschungsgemeinschaft Cluster of Excellence: Munich Centre for Advanced Photonics (www.munich-photonics.de), the Max Planck Society and the European Research Training Network ATTOFEL.

Author information




T.T.L. and M.G. conducted the experiments; A.M. and M.Th.H. contributed to the development of the source; E.G. conceived the experiments; T.T.L., M.G. and S.Yu.K. conducted the simulations; S.Yu.K. performed the analytical derivations; E.G., T.T.L., M.G. and S.Yu.K. contributed to the preparation of the manuscript.

Corresponding author

Correspondence to E. Goulielmakis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-8, Supplementary Figures 1-14 and additional references. (PDF 2682 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Luu, T., Garg, M., Kruchinin, S. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015). https://doi.org/10.1038/nature14456

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing