Abstract
Extreme ultraviolet (EUV) high-harmonic radiation1,2 emerging from laser-driven atoms, molecules or plasmas underlies powerful attosecond spectroscopy techniques3,4,5 and provides insight into fundamental structural and dynamic properties of matter6,7. The advancement of these spectroscopy techniques to study strong-field electron dynamics in condensed matter calls for the generation and manipulation of EUV radiation in bulk solids, but this capability has remained beyond the reach of optical sciences. Recent experiments8,9 and theoretical predictions10,11,12 paved the way to strong-field physics in solids by demonstrating the generation and optical control of deep ultraviolet radiation8 in bulk semiconductors, driven by femtosecond mid-infrared fields or the coherent up-conversion of terahertz fields to multi-octave spectra in the mid-infrared and optical frequencies9. Here we demonstrate that thin films of SiO2 exposed to intense, few-cycle to sub-cycle pulses give rise to wideband coherent EUV radiation extending in energy to about 40 electronvolts. Our study indicates the association of the emitted EUV radiation with intraband currents of multi-petahertz frequency, induced in the lowest conduction band of SiO2. To demonstrate the applicability of high-harmonic spectroscopy to solids, we exploit the EUV spectra to gain access to fine details of the energy dispersion profile of the conduction band that are as yet inaccessible by photoemission spectroscopy in wide-bandgap dielectrics. In addition, we use the EUV spectra to trace the attosecond control of the intraband electron motion induced by synthesized optical transients. Our work advances lightwave electronics5,13,14,15 in condensed matter into the realm of multi-petahertz frequencies and their attosecond control, and marks the advent of solid-state EUV photonics.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L35 (1988).
L’Huillier, A. & Balcou, P. High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993).
Corkum, P. B. & Krausz, F. Attosecond science. Nature Phys. 3, 381–387 (2007).
Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
Goulielmakis, E. et al. Attosecond control and measurement: lightwave electronics. Science 317, 769–775 (2007).
Baltuška, A. et al. Attosecond control of electronic processes by intense light fields. Nature 421, 611–615 (2003).
Remetter, T. et al. Attosecond electron wave packet interferometry. Nature Phys. 2, 323–326 (2006).
Ghimire, S. et al. Observation of high-order harmonic generation in a bulk crystal. Nature Phys. 7, 138–141 (2011).
Schubert, O. et al. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photon. 8, 119–123 (2014).
Feise, M. W. & Citrin, D. S. Semiclassical theory of terahertz multiple-harmonic generation in semiconductor superlattices. Appl. Phys. Lett. 75, 3536–3538 (1999).
Golde, D., Meier, T. & Koch, S. W. High harmonics generated in semiconductor nanostructures by the coupled dynamics of optical inter- and intraband excitations. Phys. Rev. B 77, 075330 (2008).
Mücke, O. D. Isolated high-order harmonics pulse from two-color-driven Bloch oscillations in bulk semiconductors. Phys. Rev. B 84, 081202 (2011).
Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011).
Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2013).
Schultze, M. et al. Controlling dielectrics with the electric field of light. Nature 493, 75–78 (2013).
Levenson, M. D. & Kano, S. Introduction to Nonlinear Laser Spectroscopy Revised edn (Academic, 1988).
Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).
Keldysh, L. V. Ionization in field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307–1314 (1965).
Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004).
Baker, S. et al. Probing proton dynamics in molecules on an attosecond time scale. Science 312, 424–427 (2006).
Wörner, H. J., Bertrand, J. B., Kartashov, D. V., Corkum, P. B. & Villeneuve, D. M. Following a chemical reaction using high-harmonic interferometry. Nature 466, 604–607 (2010).
Smirnova, O. et al. High harmonic interferometry of multi-electron dynamics in molecules. Nature 460, 972–977 (2009).
Hassan, M. T. et al. Attosecond photonics: synthesis and control of light transients. Rev. Sci. Instrum. 83, 111301 (2012).
Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).
Waschke, C. et al. Coherent submillimeter-wave emission from Bloch oscillations in a semiconductor superlattice. Phys. Rev. Lett. 70, 3319–3322 (1993).
Wegener, M. Extreme Nonlinear Optics: An Introduction (Springer, 2005).
Chelikowsky, J. R. & Schlüter, M. Electron states in α-quartz: a self-consistent pseudopotential calculation. Phys. Rev. B 15, 4020–4029 (1977).
Damascelli, A. Probing the electronic structure of complex systems by ARPES. Phys. Scr. T 109, 61–74 (2004).
Cabasse, A., Machinet, G., Dubrouil, A., Cormier, E. & Constant, E. Optimization and phase matching of fiber-laser-driven high-order harmonic generation at high repetition rate. Opt. Lett. 37, 4618–4620 (2012).
Acknowledgements
We thank M. Wismer for support in calculations, and A. Jain for help during experiments. This work was supported by a European Research Council grant (Attoelectronics-258501), the Deutsche Forschungsgemeinschaft Cluster of Excellence: Munich Centre for Advanced Photonics (www.munich-photonics.de), the Max Planck Society and the European Research Training Network ATTOFEL.
Author information
Authors and Affiliations
Contributions
T.T.L. and M.G. conducted the experiments; A.M. and M.Th.H. contributed to the development of the source; E.G. conceived the experiments; T.T.L., M.G. and S.Yu.K. conducted the simulations; S.Yu.K. performed the analytical derivations; E.G., T.T.L., M.G. and S.Yu.K. contributed to the preparation of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Text and Data 1-8, Supplementary Figures 1-14 and additional references. (PDF 2682 kb)
Rights and permissions
About this article
Cite this article
Luu, T., Garg, M., Kruchinin, S. et al. Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015). https://doi.org/10.1038/nature14456
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature14456
This article is cited by
-
Observation of interband Berry phase in laser-driven crystals
Nature (2024)
-
Topological high-harmonic spectroscopy
Communications Physics (2024)
-
Lightwave electronics in condensed matter
Nature Reviews Materials (2023)
-
Orbital perspective on high-harmonic generation from solids
Nature Communications (2023)
-
High-harmonic generation in CdTe with ultra-low pump intensity and high photon flux
Communications Physics (2023)