Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The crystallography of correlated disorder


Classical crystallography can determine structures as complicated as multi-component ribosomal assemblies with atomic resolution, but is inadequate for disordered systems—even those as simple as water ice—that occupy the complex middle ground between liquid-like randomness and crystalline periodic order. Correlated disorder nevertheless has clear crystallographic signatures that map to the type of disorder, irrespective of the underlying physical or chemical interactions and material involved. This mapping hints at a common language for disordered states that will help us to understand, control and exploit the disorder responsible for many interesting physical properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Correlated disorder in the Ising triangular lattice.
Figure 2: Ice-like states on the pyrochlore lattice.
Figure 3: Local symmetry mismatch.


  1. 1

    Kuhs, W. F. & Lehmann, M. S. The structure of ice-Ih. Water Sci. Rev. 2, 1–66 (1986).

    Google Scholar 

  2. 2

    Cartwright, J. H. E. & Mackay, A. L. Beyond crystals: the dialectic of materials and information. Phil. Trans. R. Soc. Lond. A 370, 2807–2822 (2012).

    Article  ADS  Google Scholar 

  3. 3

    Bernal, J. D. & Carlisle, C. H. The range of generalised crystallography. Sov. Phys. Crystallogr. 13, 811–831 (1969).

    Google Scholar 

  4. 4

    Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    CAS  Article  ADS  PubMed  Google Scholar 

  5. 5

    Lonsdale, K. & Smith, H. An experimental study of diffuse X-ray reflexion by single crystals. Proc. R. Soc. A 179, 8–50 (1941).

    Article  ADS  Google Scholar 

  6. 6

    Lonsdale, K. X-ray study of crystal dynamics: an historical and critical survey of experiment and theory. Proc. Phys. Soc. 54, 314–353 (1942).

    CAS  Article  ADS  Google Scholar 

  7. 7

    Maisel, S. B., Schindzielorz, N., Müller, S., Reichert, H. & Bosak, A. An accidental visualization of the Brillouin zone in an Ni-W alloy via diffuse scattering. J. Appl. Cryst. 46, 1211–1215 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Welberry, T. R., Heerdegen, A. P., Goldstone, D. C. & Taylor, I. A. Diffuse scattering resulting from macromolecular frustration. Acta Crystallogr. B 67, 516–524 (2011).This elegantly describes how a complicated diffuse scattering pattern might be explained in terms of simple disordering rules.

    CAS  Article  PubMed  Google Scholar 

  9. 9

    Welberry, T. R. et al. Diffuse neutron scattering in benzil, C14D10O2, using the time-of-flight Laue technique. J. Appl. Cryst. 36, 1440–1447 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Keen, D. A., Gutmann, M. J. & Wilson, C. C. SXD—the single crystal diffractometer at the ISIS Spallation Neutron Source. J. Appl. Cryst. 39, 714–722 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Withers, R. L. Disorder, structured diffuse scattering and the transmission electron microscope. Z. Kristallogr. 220, 1027–1034 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Soper, A. K. & Barney, E. R. Extracting the pair distribution function (PDF) from white beam X-ray total scattering data. J. Appl. Cryst. 44, 714–726 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Keen, D. A. A comparison of various commonly used correlation functions for describing total scattering. J. Appl. Cryst. 34, 172–177 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Chupas, P. J. et al. Rapid-acquisition pair distribution function (RA-PDF) analysis. J. Appl. Cryst. 36, 1342–1347 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Skinner, L. B., Benmore, C. J. & Parise, J. B. Area detector corrections for high quality synchrotron X-ray structure factor measurements Nucl. Instrum. Meth. A 662, 61–70 (2012).

    CAS  Article  ADS  Google Scholar 

  16. 16

    Bennett, T. D. et al. Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett. 104, 115503 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. 17

    Farrow, C. L. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19, 335219 (2007).

    CAS  Article  PubMed  Google Scholar 

  18. 18

    Butler, B. D. & Welberry, T. R. Calculation of diffuse scattering from simulated disordered crystals: a comparison with optical transforms. J. Appl. Cryst. 25, 391–399 (1992).

    Article  Google Scholar 

  19. 19

    Neder, R. B. & Proffen, T. Diffuse Scattering and Defect Structure Simulations: A Cook Book using the Program DISCUS (Oxford Univ. Press, 2008).

    Google Scholar 

  20. 20

    Goossens, D. J., Heerdegen, A. P., Chan, E. J. & Welberry, T. R. Monte Carlo modeling of diffuse scattering from single crystals: the program ZMC. Metall. Mater. Trans. A 42, 23–31 (2011).

    CAS  Article  Google Scholar 

  21. 21

    Welberry, T. R., Chan, E. J., Goossens, D. J. & Heerdegen, A. P. Use of Monte Carlo simulation for the interpretation and analysis of diffuse scattering. Phase Transit. 83, 80–98 (2010).

    CAS  Article  Google Scholar 

  22. 22

    Chan, E. J. et al. Single-crystal diffuse scattering studies on polymorphs of molecular crystals. I. The room-temperature polymorphs of the drug benzocaine. Acta Crystallogr. B 65, 382–392 (2009).

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Welberry, T. R. & Paściak, M. Monte Carlo and molecular dynamics simulation of disorder in the Ag+ fast ion conductors pearceite and polybasite. Metall. Mater. Trans. A 42, 6–13 (2011).

    CAS  Article  Google Scholar 

  24. 24

    Eggeman, A. S., Illig, S., Troisi, A., Sirringhaus, H. & Midgley, P. A. Measurement of molecular motion in organic semiconductors by thermal diffuse electron scattering. Nature Mater. 12, 1045–1049 (2013).

    CAS  Article  ADS  Google Scholar 

  25. 25

    Xu, R. & Chiang, T. C. Determination of phonon dispersion relations by X-ray thermal diffuse scattering. Z. Kristallogr. 220, 1009–1016 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Gutmann, M. J. et al. Room temperature single-crystal diffuse scattering and ab initio lattice dynamics in CaTiSiO5 . J. Phys. Condens. Matter 25, 315402 (2013).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Paddison, J. A. M. et al. Emergent frustration in Co-doped β-Mn. Phys. Rev. Lett. 110, 267207 (2013).Reverse Monte Carlo analysis of an experiment uncovers an unexpected magnetic structure with a simple underlying basis.

    Article  ADS  CAS  PubMed  Google Scholar 

  28. 28

    McGreevy, R. L. Reverse Monte Carlo modelling. J. Phys. Condens. Matter 13, R877–R913 (2001).

    CAS  Article  ADS  Google Scholar 

  29. 29

    Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L. & Hui, Q. RMCProfile: reverse Monte Carlo for polycrystalline materials. J. Phys. Condens. Matter 19, 335218 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. 30

    Wannier, G. H. Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357–364 (1950).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. 31

    Paddison, J. A. M., Stewart, J. R. & Goodwin, A. L. SPINVERT: a program for refinement of paramagnetic diffuse scattering data. J. Phys. Condens. Matter 25, 454220 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. 32

    Nakatsuji, S. et al. Spin-orbital short-range order on a honeycomb-based lattice. Science 336, 559–563 (2012).

    CAS  Article  ADS  PubMed  Google Scholar 

  33. 33

    Rasche, B. et al. Stacked topological insulator built from bismuth-based graphene sheet analogues. Nature Mater. 12, 422–425 (2013).

    CAS  Article  ADS  Google Scholar 

  34. 34

    Paddison, J. A. M. et al. Spin correlations in Ca3Co2O6: polarized-neutron diffraction and Monte Carlo study. Phys. Rev. B 90, 014411 (2014).

    Article  ADS  CAS  Google Scholar 

  35. 35

    Lacroix, C., Mendels, P. & Mila, F. Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer, 2011).

    Google Scholar 

  36. 36

    Lynn, J. W. et al. Order and dynamics of intrinsic nanoscale inhomogeneities in manganites. Phys. Rev. B 76, 014437 (2007).

    Article  ADS  CAS  Google Scholar 

  37. 37

    Shintani, H. & Tanaka, H. Frustration on the way to crystallization in glass. Nature Phys. 2, 200–206 (2006).

    CAS  Article  ADS  Google Scholar 

  38. 38

    Wood, B. C. & Marzari, N. Dynamical structure and thermodynamics of the superionic sublattice in α-AgI. Phys. Rev. Lett. 97, 166401 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. 39

    Ogitsu, T., Schwegler, E. & Galli, G. β-rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013).

    CAS  Article  PubMed  Google Scholar 

  40. 40

    Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    CAS  Article  Google Scholar 

  41. 41

    Fairbank, V. E., Thompson, A. L., Cooper, R. I. & Goodwin, A. L. Charge-ice dynamics in the negative thermal expansion material Cd(CN)2 . Phys. Rev. B 86, 104113 (2012).

    Article  ADS  CAS  Google Scholar 

  42. 42

    Bramwell, S. T. et al. Spin correlations in Ho2Ti2O7: a dipolar spin ice system. Phys. Rev. Lett. 87, 047205 (2001).One of the first experimental papers that initiated the studies of spin ices and subsequent searches for magnetic monopoles.

    CAS  Article  ADS  PubMed  Google Scholar 

  43. 43

    Fennell, T. et al. Magnetoelastic excitations in the pyrochlore spin liquid Tb2Ti2O7 . Phys. Rev. Lett. 112, 017203 (2014).

    CAS  Article  ADS  PubMed  Google Scholar 

  44. 44

    Madden, P. A., O'Sullivan, K. F. & Chiarotti, G. Ordering of the silver ions in α-AgI: a mechanism for the α-β phase transition. Phys. Rev. B 45, 10206–10212 (1992).

    CAS  Article  ADS  Google Scholar 

  45. 45

    Tucker, M. T., Squires, M. P., Dove, M. T. & Keen, D. A. Dynamic structural disorder in cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling. J. Phys. Condens. Matter 13, 403–423 (2001).

    CAS  Article  ADS  Google Scholar 

  46. 46

    Levin, I., Krayzman, V. & Woicik, J. C. Local structure in perovskite (Ba,Sr)TiO3: Reverse Monte Carlo refinements from multiple measurement techniques. Phys. Rev. B 89, 024106 (2014).

    Article  ADS  CAS  Google Scholar 

  47. 47

    Comès, R., Lambert, M. & Guinier, A. Désordre linéaire dans les cristaux (cas du silicium, du quartz, et des pérovskites ferroélectriques). Acta Crystallogr. A 26, 244–254 (1970).

    Article  ADS  Google Scholar 

  48. 48

    Božin, E. S. et al. Entropically stabilized local dipole formation in lead chalcogenides. Science 330, 1660–1663 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. 49

    Hull, S. et al. Neutron total scattering study of the delta and beta phases of Bi2O3 . Dalton Trans. 2009, 8737–8745 (2009).

    Article  CAS  Google Scholar 

  50. 50

    Keeble, D. S. et al. Bifurcated polarization rotation in bismuth-based piezoelectrics. Adv. Funct. Mater. 23, 185–190 (2013).‘Big-box’ modelling of total scattering shows how the local polarization changes within a higher-symmetry average lattice.

    CAS  Article  Google Scholar 

  51. 51

    Zhang, W., Cai, Y., Xiong, R.-G., Yoshikawa, H. & Awaga, K. Exceptional dielectric phase transitions in a perovskite-type cage compound. Angew. Chem. Int. Ed. 49, 6608–6610 (2010).

    CAS  Article  Google Scholar 

  52. 52

    Berret, J.-F., Bostoen, C. & Hennion, B. Phase diagram of the dipolar glass K1−x(NH4)xI. Phys. Rev. B 46, 13747–13750 (1992).

    CAS  Article  ADS  Google Scholar 

  53. 53

    David, W. I. F., Ibberson, R. M., Dennis, T. J. S., Hare, J. P. & Prassides, K. Structural phase transitions in the fullerene C60 . Europhys. Lett. 18, 219–225 (1992).

    CAS  Article  ADS  Google Scholar 

  54. 54

    Liu, X. et al. Structural changes in a marine podovirus associated with release of its genome into Prochlorococcus. Nature Struct. Mol. Biol. 17, 830–836 (2010).

    CAS  Article  Google Scholar 

  55. 55

    Xu, G., Wen, J., Stock, C. & Gehring, P. M. Phase instability induced by polar nanoregions in a relaxor ferroelectric system. Nature Mater. 7, 562–566 (2008).

    CAS  Article  ADS  Google Scholar 

  56. 56

    Billinge, S. J. L., Proffen, Petkov, V., Sarrao, J. L. & Kycia, S. Evidence for charge localization in the ferromagnetic phase of La1−xCaxMnO3 from high real-space-resolution x-ray diffraction. Phys. Rev. B 62, 1203–1211 (2000).

    CAS  Article  ADS  Google Scholar 

  57. 57

    Bennemann, K. H., Ketterson, J. B., eds. Superconductivity: Conventional and Unconventional Superconductors Vol. 1 (Springer, 2008).

    Google Scholar 

  58. 58

    Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    ADS  Google Scholar 

  59. 59

    Bramwell, S. T. et al. Measurement of the charge and current of magnetic monopoles in spin ice. Nature 461, 956–959 (2009).

    CAS  Article  ADS  PubMed  Google Scholar 

  60. 60

    Christensen, M. et al. Avoided crossing of rattler modes in thermoelectric materials. Nature Mater. 7, 811–815 (2008).

    CAS  Article  ADS  Google Scholar 

  61. 61

    Bowron, D. T. et al. NIMROD: The Near and InterMediate Range Order Diffractometer of the ISIS second target station. Rev. Sci. Instrum. 81, 033905 (2010).

    CAS  Article  ADS  PubMed  Google Scholar 

  62. 62

    Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nature Commun. 5, 4176 (2014).

    CAS  Article  ADS  Google Scholar 

  63. 63

    Rademacher, N., Daemen, L. L., Chronister, E. L. & Proffen, T. Pair distribution function analysis of molecular compounds: significance and modeling approach discussed using the example of p-terphenyl. J. Appl. Cryst. 45, 482–488 (2012).

    CAS  Article  Google Scholar 

  64. 64

    Goossens, D. J. & Whitfield, R. E. Distinguishing types of disorder in diffuse scattering: a numerical simulation study. Metall. Mater. Trans. A 45, 152–161 (2014).

    CAS  Article  Google Scholar 

  65. 65

    Krayzman, V. & Levin, I. Reverse Monte Carlo refinements of nanoscale atomic correlations using powder and single-crystal diffraction data. J. Appl. Cryst. 45, 106–112 (2012).

    CAS  Article  Google Scholar 

  66. 66

    Weber, T. & Simonov, A. The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts. Z. Kristallogr. 227, 238–247 (2012).

    CAS  Article  Google Scholar 

  67. 67

    Danilkin, S. A. Diffuse scattering and lattice dynamics of superionic copper chalcogenides. Solid State Ionics 180, 483–487 (2009).

    CAS  Article  Google Scholar 

  68. 68

    Chang, L.-J. et al. Higgs transition from a magnetic Coulomb liquid to a ferromagnet in Yb2Ti2O7 . Nature Commun. 3, 992 (2012).

    Article  ADS  CAS  Google Scholar 

  69. 69

    Wehinger, B. et al. Diffuse scattering in Ih ice. J. Phys. Condens. Matter 26, 265401 (2014).High-quality X-ray diffuse and inelastic scattering and computer simulations are combined to show how the molecules in water ice disorder.

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Kwei, G. H., Lawson, A. C., Billinge, S. J. L. & Cheong, S.-W. Structures of the ferroelectric phases of barium titanate. J. Phys. Chem. 97, 2368–2377 (1993).

    CAS  Article  Google Scholar 

  71. 71

    Algara-Siller, G. et al. Square ice in graphene nanocapillaries. Nature 519, 443–445 (2015).

  72. 72

    Bernal, J. D. & Fowler, R. H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions. J. Chem. Phys. 1, 515–548 (1933).

    CAS  Article  ADS  Google Scholar 

  73. 73

    Lieb, E. H. Residual entropy of square ice. Phys. Rev. 162, 162–172 (1967).

    CAS  Article  ADS  Google Scholar 

Download references


We are grateful for discussions with J. A. M. Paddison, M. J. Cliffe and A. B. Cairns. A.L.G. acknowledges financial support from the ERC (grant number 279705).

Author information




D.A.K. and A.L.G. contributed equally to this work.

Corresponding authors

Correspondence to David A. Keen or Andrew L. Goodwin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keen, D., Goodwin, A. The crystallography of correlated disorder. Nature 521, 303–309 (2015).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing