Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The origin and early phylogenetic history of jawed vertebrates

Subjects

Abstract

Fossils of early gnathostomes (or jawed vertebrates) have been the focus of study for nearly two centuries. They yield key clues about the evolutionary assembly of the group's common body plan, as well the divergence of the two living gnathostome lineages: the cartilaginous and bony vertebrates. A series of remarkable new palaeontological discoveries, analytical advances and innovative reinterpretations of existing fossil archives have fundamentally altered a decades-old consensus on the relationships of extinct gnathostomes, delivering a new evolutionary framework for exploring major questions that remain unanswered, including the origin of jaws.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Fossils relevant to early jawed-vertebrate evolution derive from major fossil sites in North America and Europe, and increasingly China and Australia.
Figure 2: Discoveries over the past two decades provide new clues about the evolution of early jawed vertebrates and their kin.
Figure 3: Time-calibrated phylogeny of early jawed vertebrates and their immediate jawless relatives, showing minimum times of divergence based on fossil evidence.

References

  1. Gegenbaur, C., Bell, F. J. & Lankester, E. R. Elements of Comparative Anatomy (Macmillan and Co., 1878).

    Book  Google Scholar 

  2. Balfour, F. M. On the development of the skeleton of the paired fins of Elasmobranchii, considered in relation to its bearings on the nature of the limbs of the Vertebrata. Proc. Zool. Soc. Lond. 49, 656–670 (1881).

    Article  Google Scholar 

  3. de Beer, G. The Development of the Vertebrate Skull (Oxford Univ. Press, 1937).

    Google Scholar 

  4. Reif, W.-E. Evolution of dermal skeleton and dentition in vertebrates. Evol. Biol. 15, 287–368 (1982).

    Article  Google Scholar 

  5. Shubin, N. H. Origin of evolutionary novelty: examples from limbs. J. Morphol. 252, 15–28 (2002).

    Article  PubMed  Google Scholar 

  6. Kuratani, S. Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty. J. Anat. 205, 335–347 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shigetani, Y., Sugahara, F. & Kuratani, S. A new evolutionary scenario for the vertebrate jaw. Bioessays 27, 331–338 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Wagner, G. P. & Lynch, V. J. Evolutionary novelties. Curr. Biol. 20, R48–R52 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Zhu, M. et al. The oldest articulated osteichthyan reveals mosaic gnathostome characters. Nature 458, 469–474 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Janvier, P. Early Vertebrates (Clarendon, 1996). This masterful summary provides a window on the 'state of the art' immediately preceding the major changes to our understanding of relationships among early gnathostomes that took place over the past two decades, and is still an indispensible and accessible resource.

    Google Scholar 

  11. Dean, B. Contributions to the morphology of Cladoselache (Cladodus). J. Morphol. 9, 87–114 (1894).

    Article  Google Scholar 

  12. Watson, D. M. S. The acanthodian fishes. Philos. Trans. R. Soc. Lond. 228, 49–146 (1937).

    ADS  Google Scholar 

  13. Zangerl, R. & Williams, M. E. New evidence on the nature of the jaw suspension in Palaeozoic anacanthous sharks. Palaeontology 18, 333–341 (1975).

    Google Scholar 

  14. Gregory, W. K. Further observations on the pectoral girdle and fin of Sauripterus taylori Hall, a crossopterygian fish from the Upper Devonian of Pennsylvania, with special reference to the origin of the pentadactylate extremities of Tetrapoda. Proc. Am. Phil. Soc. 75, 673–690 (1935).

    Google Scholar 

  15. Miles, R. S. A reinterpretation of the visceral skeleton of Acanthodes. Nature 204, 457–459 (1964).

    Article  ADS  Google Scholar 

  16. Davis, M. C., Shubin, N. & Daeschler, E. B. A new specimen of Sauripterus taylori (Sarcopterygii, Osteichthyes) from the Famennian Catskill Formation of North America. J. Vertebr. Paleontol. 24, 26–40 (2004).

    Article  CAS  Google Scholar 

  17. Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, 2005).

    Google Scholar 

  18. Makovicky, P. J. & Zanno, L. E. in Living Dinosaurs: The Evolutionary History of Modern Birds (eds Dyke, G. & Kaiser, G.) 9–29 (Wiley, 2011).

    Book  Google Scholar 

  19. Clack, J. A. Gaining Ground (Indiana Univ. Press, 2012).

    Google Scholar 

  20. Brazeau, M. D. & Friedman, M. The characters of Palaeozoic jawed vertebrates. Zool. J. Linn. Soc. 170, 779–821 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen, M., Zou, M., Yang, L. & He, S. Basal jawed vertebrate phylogenomics using transcriptomic data from Solexa sequencing. PLoS ONE 7, e36256 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Donoghue, P. C., Forey, P. L. & Aldridge, R. J. Conodont affinity and chordate phylogeny. Biol. Rev. Camb. Philos. Soc. 75, 191–251 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Ota, K. G., Fujimoto, S., Oisi, Y. & Kuratani, S. Identification of vertebra-like elements and their possible differentiation from sclerotomes in the hagfish. Nature Commun. 2, 373 (2011).

    Article  ADS  CAS  Google Scholar 

  24. Oisi, Y., Ota, K. G., Kuraku, S., Fujimoto, S. & Kuratani, S. Craniofacial development of hagfishes and the evolution of vertebrates. Nature 493, 175–180 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Ota, K. G., Kuraku, S. & Kuratani, S. Hagfish embryology with reference to the evolution of the neural crest. Nature 446, 672–675 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Heimberg, A. M., Cowper-Sal-lari, R., Semon, M., Donoghue, P. C. & Peterson, K. J. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc. Natl Acad. Sci. USA 107, 19379–19383 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karatajute-Talimaa, V. & Predtechenskyj, N. The distribution of the vertebrates in the Late Ordovician and Early Silurian palaeobasins of the Siberian Platform. Bull. Mus. Natl Hist. Nat. 4, 39–55 (1995).

    Google Scholar 

  28. Smith, M. M. & Sansom, I. J. Exoskeletal micro-remains of an Ordovician fish from the Harding Sandstone of Colorado. Palaeontology 40, 645–658 (1997).

    Google Scholar 

  29. Sansom, I. J., Davies, N. S., Coates, M. I., Nicoll, R. S. & Ritchie, A. Chondrichthyan-like scales from the Middle Ordovician of Australia. Palaeontology 55, 243–247 (2012).

    Article  Google Scholar 

  30. Zhao, W.-J. & Zhu, M. Siluro-Devonian vertebrate biostratigraphy and biogeography of China. Palaeoworld 19, 4–26 (2010).

    Article  Google Scholar 

  31. Anderson, P. S., Friedman, M., Brazeau, M. D. & Rayfield, E. J. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476, 206–209 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Karatajute-Talimaa, V. N., Novtistkaya, L. I., Rozman, K. S. & Sodov, J. Mongolepis, a new genus of Elasmobranchii from the Lower Silurian of Mongolia. Paleontologicheskii zhurnal 1, 76–86 (1990).

    Google Scholar 

  33. Sansom, I. J., Wang, N.-Z. & Smith, M. The histology and affinities of sinacanthid fishes: primitive gnathostomes from the Silurian of China. Zool. J. Linn. Soc. 144, 379–386 (2005).

    Article  Google Scholar 

  34. Janvier, P. & Maisey, J. G. in Morphology, Phylogeny and Paleobiogeography of Fossil Fishes (eds Elliott, D. K., Maisey, J. G., Yu, X. & Miao, D.) 431–459 (Dr Freidrich Pfeil, 2010).

    Google Scholar 

  35. Panchen, A. L. & Smithson, T. R. Character diagnosis, fossils and the origin of tetrapods. Biol. Rev. Camb. Philos. Soc. 62, 341–436 (1987).

    Article  Google Scholar 

  36. Ahlberg, P. E. & Johanson, Z. Osteolepiforms and the ancestry of tetrapods. Nature 395, 792–794 (1998).

    Article  ADS  Google Scholar 

  37. Lukševičs, E., Lebedev, O. A. & Zakharenko, G. V. Palaeozoogeographical connections of the Devonian vertebrate communities of the Baltica Province. Part I. Eifelian-Givetian. Palaeoworld 19, 94–107 (2010).

    Article  Google Scholar 

  38. Schultze, H.-P. Palaeoniscoidea-Schuppen aus dem Unterdevon Australiens und Kanadas und aus dem Mitteldevon Spitzbergens [in German]. British Mus. Nat. Hist. Geol. 16, 343–376 (1968).

    Google Scholar 

  39. Gross, W. Fragliche Actinopterygier-Schuppen aus dem Silur Gotlands [in German]. Lethaia 1, 184–218 (1968).

    Article  Google Scholar 

  40. Botella, H., Blom, H., Dorka, M., Ahlberg, P. E. & Janvier, P. Jaws and teeth of the earliest bony fishes. Nature 448, 583–586 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Friedman, M. & Brazeau, M. D. A reappraisal of the origin and basal radiation of the Osteichthyes. J. Vertebr. Paleontol. 30, 36–56 (2010).

    Article  Google Scholar 

  42. Giles, S., Friedman, M. & Brazeau, M. D. Osteichthyan-like cranial conditions in an Early Devonian stem gnathostome. Nature http://dx.doi.org/10.1038/nature14065 (2015).

  43. Märss, T., Turner, S. & Karatajute-Talimaa, V. in Handbook of Paleoichthyology Vol. 1B (ed. Schultze, H.-P.) (Dr Friedrich Pfeil, 2007).

    Google Scholar 

  44. Zhu, M. & Gai, Z.-K. Phylogenetic relationships of galeaspids (Agnatha). Vertebr. PalAsiat. 44, 1–27 (2006).

    Google Scholar 

  45. Sansom, R. S. Endemicity and palaeobiogeography of the Osteostraci and Galeaspida: a test of scenarios of gnathostome evolution. Palaeontology 52, 1257–1273 (2009).

    Article  Google Scholar 

  46. Sansom, R. S. Phylogeny, classification and character polarity of the Osteostraci (Vertebrata). J. Syst. Paleontol. 7, 95–115 (2009).

    Article  Google Scholar 

  47. Young, G. C. Placoderms (armoured fish): dominant vertebrates of the Devonian period. Annu. Rev. Earth Planet. Sci. 38, 523–550 (2010).

    Article  ADS  CAS  Google Scholar 

  48. Miles, R. S. in Interrelationships of Fishes (eds Greenwood, P. H., Miles, R. S. & Patterson, C.) 63–103 (Academic, 1973). This first-generation application of cladistic methodology to early jawed vertebrates placed the 'spiny sharks' as early relatives of bony fishes, a perspective that profoundly influenced perceptions of the ancestral crown gnathostome for more than 40 years.

    Google Scholar 

  49. Davis, S. P., Finarelli, J. A. & Coates, M. I. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486, 247–250 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Stensiö, E. A. The Devonian and Downtonian vertebrates of Spitsbergen. Part 1. Family Cephalaspidae. Skr. Svalbard Ishav. 12, 1–391 (1927).

    Google Scholar 

  51. Stensiö, E. A. The Cephalaspids of Great Britain (British Museum (Natural History), 1932).

    Book  Google Scholar 

  52. Jarvik, E. Basic Structure and Evolution of Vertebrates (Academic, 1980).

    Google Scholar 

  53. White, E. I. The larger arthrodiran fishes from the area of the Burrinjuck Dam, N.S.W. Tran. Zoo. Soc. Lond. 34, 149–262 (1978).

    Article  Google Scholar 

  54. Basden, A. M. & Young, G. C. A primitive actinopterygian neurocranium from the Early Devonian of Southeastern Australia. J. Vertebr. Paleontol. 21, 754–766 (2001).

    Article  Google Scholar 

  55. Basden, A. M., Young, G. C., Coates, M. I. & Richtie, A. The most primitive osteichthyan braincase? Nature 403, 185–188 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Young, G. C. A new Early Devonian placoderm from New South Wales, Australia, with a discussion of placoderm phylogeny. Palaeontogr. A 167, 10–76 (1980).

    Google Scholar 

  57. Gai, Z., Donoghue, P. C., Zhu, M., Janvier, P. & Stampanoni, M. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476, 324–327 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Dupret, V., Sanchez, S., Goujet, D., Tafforeau, P. & Ahlberg, P. E. A primitive placoderm sheds light on the origin of the jawed vertebrate face. Nature 507, 500–503 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Maisey, J. G., Miller, R. & Turner, S. The braincase of the chondrichthyan Doliodus from the Lower Devonian Campbellton Formation of New Brunswick, Canada. Acta Zool. 90 (Suppl. 1), 109–122 (2009).

    Article  Google Scholar 

  60. Maisey, J. G., Turner, S., Naylor, G. J. & Miller, R. F. Dental patterning in the earliest sharks: implications for tooth evolution. J. Morphol. 275, 586–596 (2014).

    PubMed  Google Scholar 

  61. Schaeffer, B. in Problèmes Actuels de Paléontologie: Evolution des Vertébrés Vol. 218 [in French] (ed. Lehman, J.-P.) 101–109 (Colloques internationaux du Centre national de la Recheche scientifique, 1975).

    Google Scholar 

  62. Long, J. A. & Trinajstic, K. The Late Devonian Gogo Formation Lägerstatte of Western Australia: exceptional early vertebrate preservation and diversity. Annu. Rev. Earth Planet. Sci. 38, 255–279 (2010).

    Article  ADS  CAS  Google Scholar 

  63. Zhu, M. Catalogue of Devonian vertebrates in China, with notes on bio-events. Cour. Forsch. Inst. Senckenberg 223, 379–390 (2000).

    Google Scholar 

  64. Bernacsek, G. M. & Dineley, D. L. New acanthodians from the Delorme Formation (Lower Devonian) of N.W.T. Canada. Palaeontogr. A 159, 1–25 (1977).

    Google Scholar 

  65. Janvier, P. & Blieck, A. New data on the internal anatomy of the Heterostraci (Agnatha), with general remarks on the phylogeny of the Craniota. Zool. Scr. 8, 287–296 (1979).

    Article  Google Scholar 

  66. Janvier, P. The phylogeny of Craniata, with particular reference to the significance of fossil 'agnathans'. J. Vertebr. Paleontol. 1, 121–159 (1981). This article established osteostracans and galeaspids as successive outgroups to, and thus important comparative models for, jawed vertebrates, an arrangement that has survived intact for more than three decades.

    Article  Google Scholar 

  67. Forey, P. L. Yet more reflections on agnathan-gnathostome relationships. J. Vertebr. Paleontol. 4, 330–343 (1984).

    Article  Google Scholar 

  68. Wang, N.-Z. in Early Vertebrates and Related Problems of Evolutionary Biology (eds Chang, M.-M., Lui, Y.-H. & Zhang, G.-R.) (Science, 1991).

    Google Scholar 

  69. Forey, P. L. & Janvier, P. Agnathans and the origin of jawed vertebrates. Nature 361, 129–134 (1993).

    Article  ADS  Google Scholar 

  70. Zhu, M., Yu, X. & Janvier, P. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397, 607–610 (1999). The bizarre combination of traits for Psarolepis reported in this article highlighted weaknesses in existing phylogenies of early jawed vertebrates, and triggered a resurgence in systematic studies.

    Article  ADS  CAS  Google Scholar 

  71. Zhu, M. & Schultze, H.-P. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 81–84 (Taylor & Francis, 2001).

    Google Scholar 

  72. Zhu, M., Yu, X. & Ahlberg, P. E. A primitive sarcopterygian fish with an eyestalk. Nature 410, 81–84 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  73. Friedman, M. Styloichthys as the oldest coelacanth: implications for early osteichthyan interrelationships. J. Syst. Palaeontology 5, 289–343 (2007).

    Article  Google Scholar 

  74. Coates, M. I. & Sequiera, S. E. K. A new stethacanthid chondrichthyan from the Lower Carboniferous of Bearsden, Scotland. J. Vertebr. Paleontol. 21, 438–459 (2001).

    Article  Google Scholar 

  75. Coates, M. I. & Sequiera, S. E. K. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 241–262 (Taylor & Francis, 2001).

    Google Scholar 

  76. Maisey, J. G. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 263–288 (Taylor & Francis, 2001).

    Google Scholar 

  77. Brazeau, M. D. The braincase and jaws of a Devonian 'acanthodian' and modern gnathostome origins. Nature 457, 305–308 (2009). This study was the first to rigorously test — and, in doing so, to reject — placoderm and acanthodian monophyly, and provides the empirical core for most subsequent phylogenetic investigations of early gnathostomes.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Zhu, M. et al. A Silurian placoderm with osteichthyan-like marginal jaw bones. Nature 502, 188–193 (2013). Of the many remarkable early gnathostome fossils to emerge from China, few have shifted the evolutionary paradigm as much as Entelognathus , a placoderm-like creature with jaw bones resembling those of bony fishes.

    Article  ADS  CAS  PubMed  Google Scholar 

  79. Halstead, L. B. Internal anatomy of the polybranchiaspids (Agnatha, Galeaspida). Nature 282, 833–836 (1979).

    Article  ADS  Google Scholar 

  80. Kuratani, S. Evolution of the vertebrate jaw from developmental perspectives. Evol. Dev. 14, 76–92 (2012).

    Article  PubMed  Google Scholar 

  81. Miles, R. S. Observations on the ptyctodont fish, Rhamphodopsis Watson. Zool. J. Linn. Soc. 47, 99–120 (1967).

    Article  Google Scholar 

  82. Ahlberg, P., Trinajstic, K., Johanson, Z. & Long, J. Pelvic claspers confirm chondrichthyan-like internal fertilization in arthrodires. Nature 460, 888–889 (2009). This direct evidence of claspers in arthrodires renewed the palaeobiological importance of placoderms regarding internal fertilization, but potentially weakens the case for their paraphyly.

    Article  ADS  CAS  PubMed  Google Scholar 

  83. Trinajstic, K., Boisvert, C., Long, J., Maksimenko, A. & Johanson, Z. Pelvic and reproductive structures in placoderms (stem gnathostomes). Biol. Rev. Camb. Philos. Soc. http://dx.doi.org/10.1111/brv.12118 (2014).

  84. Long, J. A., Trinajstic, K. & Johanson, Z. Devonian arthrodire embryos and the origin of internal fertilization in vertebrates. Nature 457, 1124–1127 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  85. Long, J. A. et al. Copulation in antiarch placoderms and the origin of gnathostome internal fertilization. Nature 517, 196–199 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Janvier, P. The relationships of the Osteostraci and Galeaspida. J. Vertebr. Paleontol. 4, 344–358 (1984).

    Article  Google Scholar 

  87. Hanke, G. F. & Wilson, M. V. H. in Recent Advances in the Origin and Early Radiation of Vertebrates (eds Arratia, G., Wilson, M. V. H. & Cloutier, R.) 189–216 (Dr Friedrich Pfeil, 2004).

    Google Scholar 

  88. Hanke, G. F. & Wilson, M. V. H. in Morphology, Phylogeny and Paleobiogeography of Fossil Fishes (eds Elliott, D. K., Maisey, J. G., Yu, X. & Miao, D.) 149–182 (Dr Friedrich Pfeil, 2010).

    Google Scholar 

  89. Hanke, G. F., Wilson, M. V. H. & Saurette, F. Partial articulated specimen of the Early Devonian putative chondrichthyan Polymerolepis whitei Karatajūtė-Talimaa, 1968, with an anal fin spine. Geodiversitas 35, 529–543 (2013).

    Article  Google Scholar 

  90. Hanke, G. F. & Wilson, M. V. H. Anatomy of the Early Devonian acanthodian Brochoadmones milesi based on nearly complete body fossils, with comments on the evolution and development of paired fins. J. Vertebr. Paleontol. 26, 526–537 (2006).

    Article  Google Scholar 

  91. Schaeffer, B. The xenacanth shark neurocranium, with comments on elasmobranch monophyly. Bull. Am. Mus. Nat. Hist. 169, 1–66 (1981).

    Google Scholar 

  92. Maisey, J. G. & Anderson, M. E. A primitive chondrichthyan braincase from the Early Devonian of South Africa. J. Vertebr. Paleontol. 21, 702–713 (2001).

    Article  Google Scholar 

  93. Miller, R. F., Cloutier, R. & Turner, S. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425, 501–504 (2003). This reports the oldest record of an articulated chondrichthyan and the first example with paired fin spines, initiating the dissolution of support for acanthodian monophyly.

    Article  ADS  CAS  PubMed  Google Scholar 

  94. Turner, S. in Recent Advances in the Origin and Early Radiation of Vertebrates (eds Arratia, G., Wilson, M. V. H. & Cloutier, R.) 67–94 (Dr Friedrich Pfeil, 2004).

    Google Scholar 

  95. Schultze, H.-P. & Cumbaa, S. L. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E.) 315–332 (Taylor & Francis, 2001).

    Google Scholar 

  96. Yu, X. A new porolepiform-like fish, Psarolepis romeri, gen. et sp. nov. (Sarcopterygii, Osteichthyes) from the Lower Devonian of Yunnan, China. J. Vertebr. Paleontol. 18, 261–274 (1998).

    Article  Google Scholar 

  97. Zhu, M. et al. Fossil fishes from China provide first evidence of dermal pelvic girdles in osteichthyans. PLoS ONE 7, e35103 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Coates, M. I. The evolution of paired fins. Theory Biosci. 122, 266–287 (2003).

    Article  Google Scholar 

  99. Gardiner, B. G. The relationships of placoderms. J. Vertebr. Paleontol. 4, 375–395 (1984).

    Article  Google Scholar 

  100. Young, G. C. The relationships of the placoderm fishes. Zool. J. Linn. Soc. 88, 1–57 (1986). This article provided an explicit argument for the status of placoderms as stem gnathostomes that has not been seriously challenged in the following three decades.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Philip Leverhulme Prize and John Fell Fund, both to M.F., and the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement number 311092 to M.D.B. Both authors contributed equally to this Review.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Martin D. Brazeau or Matt Friedman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Brazeau, M., Friedman, M. The origin and early phylogenetic history of jawed vertebrates. Nature 520, 490–497 (2015). https://doi.org/10.1038/nature14438

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14438

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing