Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphatic vessels arise from specialized angioblasts within a venous niche

Abstract

How cells acquire their fate is a fundamental question in developmental and regenerative biology. Multipotent progenitors undergo cell-fate restriction in response to cues from the microenvironment, the nature of which is poorly understood. In the case of the lymphatic system, venous cells from the cardinal vein are thought to generate lymphatic vessels through trans-differentiation. Here we show that in zebrafish, lymphatic progenitors arise from a previously uncharacterized niche of specialized angioblasts within the cardinal vein, which also generates arterial and venous fates. We further identify Wnt5b as a novel lymphatic inductive signal and show that it also promotes the ‘angioblast-to-lymphatic’ transition in human embryonic stem cells, suggesting that this process is evolutionarily conserved. Our results uncover a novel mechanism of lymphatic specification, and provide the first characterization of the lymphatic inductive niche. More broadly, our findings highlight the cardinal vein as a heterogeneous structure, analogous to the haematopoietic niche in the aortic floor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymphatic progenitors originate in the vPCV.
Figure 2: vPCV cells are specialized angioblasts.
Figure 3: LEC specification is induced in the vPCV angioblasts.
Figure 4: Wnt5b is necessary and sufficient for LEC specification.
Figure 5: Wnt5b induces lymphatic specification in zebrafish and hESCs.
Figure 6: Wnt5b induces LEC specification through activation of the canonical pathway.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

RNA-Seq raw data and processed values have been submitted to the NCBI Gene Expression Omnibus (GEO) under the accession number GSE65751.

References

  1. Alitalo, K. The lymphatic vasculature in disease. Nature Med. 17, 1371–1380 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Sabin, F. R. On the origin of the lymphatic system from the veins, and the development of the lymph hearts and thoracic duct in the pig. Am. J. Anat. 1, 367–389 (1902).

    Article  Google Scholar 

  3. Huntington, G. & McClure, C. The anatomy and development of the jugular lymph sac in the domestic cat (Felis domestica). Am. J. Anat. 10, 177–312 (1910).

    Article  Google Scholar 

  4. Yaniv, K. et al. Live imaging of lymphatic development in the zebrafish. Nature Med. 12, 711–716 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Srinivasan, R. S. et al. Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. Genes Dev. 21, 2422–2432 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ny, A. et al. A genetic Xenopus laevis tadpole model to study lymphangiogenesis. Nature Med. 11, 998–1004 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Wilting, J., Tomarev, S. I., Christ, B. & Schweigerer, L. Lymphangioblasts in embryonic lymphangiogenesis. Lymphat. Res. Biol. 1, 33–40 (2003).

    Article  PubMed  Google Scholar 

  8. Yang, Y. & Oliver, G. Development of the mammalian lymphatic vasculature. J. Clin. Invest. 124, 888–897 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Francois, M. et al. Sox18 induces development of the lymphatic vasculature in mice. Nature 456, 643–647 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Srinivasan, R. S. et al. The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes Dev. 24, 696–707 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karkkainen, M. J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nature Immunol. 5, 74–80 (2004).

    Article  CAS  Google Scholar 

  13. Dunworth, W. P. et al. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ. Res. 114, 56–66 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Deng, Y., Atri, D., Eichmann, A. & Simons, M. Endothelial ERK signaling controls lymphatic fate specification. J. Clin. Invest. 123, 1202–1215 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Küchler, A. M. et al. Development of the zebrafish lymphatic system requires VEGFC signaling. Curr. Biol. 16, 1244–1248 (2006).

    Article  PubMed  CAS  Google Scholar 

  16. Avraham-Davidi, I. et al. ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1. Nature Med. 18, 967–973 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Herwig, L. et al. Distinct cellular mechanisms of blood vessel fusion in the zebrafish embryo. Curr. Biol. 21, 1942–1948 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Lim, A. H. et al. Motoneurons are essential for vascular pathfinding. Development 138, 3847–3857 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Isogai, S., Lawson, N. D., Torrealday, S., Horiguchi, M. & Weinstein, B. M. Angiogenic network formation in the developing vertebrate trunk. Development 130, 5281–5290 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kohli, V., Schumacher, J. A., Desai, S. P., Rehn, K. & Sumanas, S. Arterial and venous progenitors of the major axial vessels originate at distinct locations. Dev. Cell 25, 196–206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herbert, S. P. et al. Arterial-venous segregation by selective cell sprouting: an alternative mode of blood vessel formation. Science 326, 294–298 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Conway, E. M., Collen, D. & Carmeliet, P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res. 49, 507–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Vatine, G. D. et al. Zebrafish as a model for monocarboxyl transporter 8-deficiency. J. Biol. Chem. 288, 169–180 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Okuda, K. S. et al. lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish. Development 139, 2381–2391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashimshony, T., Wagner, F., Sher, N. & Yanai, I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2, 666–673 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. van Impel, A. et al. Divergence of zebrafish and mouse lymphatic cell fate specification pathways. Development 141, 1228–1238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okamura, M. et al. COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis. Proc. Natl Acad. Sci. USA 106, 5819–5824 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karalay, O. et al. Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proc. Natl Acad. Sci. USA 108, 5807–5812 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cermenati, S. et al. Sox18 genetically interacts with VegfC to regulate lymphangiogenesis in zebrafish. Arterioscler. Thromb. Vasc. Biol. 33, 1238–1247 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Hogan, B. M. et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nature Genet. 41, 396–398 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Kusuma, S. et al. Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix. Proc. Natl Acad. Sci. USA 110, 12601–12606 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mikels, A. J. & Nusse, R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 4, e115 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. van Amerongen, R., Fuerer, C., Mizutani, M. & Nusse, R. Wnt5a can both activate and repress Wnt/beta-catenin signaling during mouse embryonic development. Dev. Biol. 369, 101–114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ikeda, S. et al. Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. EMBO J. 17, 1371–1384 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Veien, E. S., Grierson, M. J., Saund, R. S. & Dorsky, R. I. Expression pattern of zebrafish tcf7 suggests unexplored domains of Wnt/beta-catenin activity. Dev. Dyn. 233, 233–239 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Lindskog, H. et al. Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals. Development 141, 1120–1128 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stoick-Cooper, C. L. et al. Distinct Wnt signaling pathways have opposing roles in appendage regeneration. Development 134, 479–489 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Moro, E. et al. In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. Dev. Biol. 366, 327–340 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Alexander, J., Rothenberg, M., Henry, G. L. & Stainier, D. Y. casanova plays an early and essential role in endoderm formation in zebrafish. Dev. Biol. 215, 343–357 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Lele, Z., Bakkers, J. & Hammerschmidt, M. Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations. Genesis 30, 190–194 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Heisenberg, C. P. et al. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. Genes Dev. 15, 1427–1434 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hurlstone, A. F. et al. The Wnt/beta-catenin pathway regulates cardiac valve formation. Nature 425, 633–637 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Bussmann, J. et al. Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk. Development 137, 2653–2657 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Fisher, S. et al. Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nature Protocols 1, 1297–1305 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Villefranc, J. A., Amigo, J. & Lawson, N. D. Gateway compatible vectors for analysis of gene function in the zebrafish. Dev. Dyn. 236, 3077–3087 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cermenati, S. et al. Sox18 and Sox7 play redundant roles in vascular development. Blood 111, 2657–2666 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Shepard, J. L., Stern, H. M., Pfaff, K. L. & Amatruda, J. F. Analysis of the cell cycle in zebrafish embryos. Methods Cell Biol. 76, 109–125 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Chen, B. et al. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nature Chem. Biol. 5, 100–107 (2009).

    Article  ADS  CAS  Google Scholar 

  50. Cirone, P. et al. A role for planar cell polarity signaling in angiogenesis. Angiogenesis 11, 347–360 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Griffin, K. J. & Kimelman, D. One-Eyed Pinhead and Spadetail are essential for heart and somite formation. Nature Cell Biol. 4, 821–825 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Nyholm, M. K., Wu, S. F., Dorsky, R. I. & Grinblat, Y. The zebrafish zic2a-zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the developing tectum. Development 134, 735–746 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Dorsky, R. I., Sheldahl, L. C. & Moon, R. T. A transgenic Lef1/β-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. Dev. Biol. 241, 229–237 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Shimizu, T. et al. Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish. Mech. Dev. 91, 293–303 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, H. J. et al. Wnt5 signaling in vertebrate pancreas development. BMC Biol. 3, 23 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Ben Shoham, A. et al. S1P1 inhibits sprouting angiogenesis during vascular development. Development 139, 3859–3869 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Levin, M., Hashimshony, T., Wagner, F. & Yanai, I. Developmental milestones punctuate gene expression in the Caenorhabditis embryo. Dev. Cell 22, 1101–1108 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Bauer, S., Grossmann, S., Vingron, M. & Robinson, P. N. Ontologizer 2.0–a multifunctional tool for GO term enrichment analysis and data exploration. Bioinformatics 24, 1650–1651 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Levin, M. A novel immunohistochemical method for evaluation of antibody specificity and detection of labile targets in biological tissue. J. Biochem. Biophys. Methods 58, 85–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Jin, S. W., Beis, D., Mitchell, T., Chen, J. N. & Stainier, D. Y. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199–5209 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Cohen, N. Strasser, R. Solomon and F. Bochner for technical assistance, N. Stettner and A. Harmelin for animal care, G. Beck and E. Ainbinder for assistance with hESC experiments, E. Winter for RNA-Seq analyses, F. Argenton for providing the Tg(7xTCF-Xla.Siam:nlsmCherry)ia5 transgenic line, G. Weidinger for the Tg(hsp70l:wnt5b-GFP)w33 line, E. Ober for the TgBAC(prox1a:KalT4-UAS:uncTagRFP)nim5 line, S. Schulte-Merker for the Tg(flt4BAC:mCitrine)hu7135 line, S. Sumanas for the Tg(etv2:GFP)ci1 line, M. Affolter and H. G. Belting for the Tg(fli1:gal4ubs3;uasKaederk8) line, A. Inbal for the pCS2-axin plasmid, B. Weinstein for the pME-nr2f2 plasmid and the cas mutants, M. Beltrame for the pCMV sox18 plasmid, and E. Tzahor, E. Zelzer, M. Neeman and B. Shilo for critical reading of the manuscript. The authors are grateful to all the members of the Yaniv laboratory for discussion, technical assistance and continuous support. This work was supported in part by Marie Curie Actions-International Reintegration grants FP7-PEOPLE-2009-RG 256393 (to K.Y.), Minerva Foundation 711128 (to K.Y.), German-Israeli Foundation Young Investigator Program 1967/2009 (to K.Y.), Israel Cancer Research Foundation Postdoctoral Fellowship (to G.M.), Lymphatic Research and Education Network postdoctoral fellowship (to G.M.), Northrine Westphalia Return fellowship (to W.H.), US National Institutes of Health (NIH) R01 HL122599 (to N.D.L.), JSPS Postdoctoral Fellowships for Research Abroad (to M.S.), ERC 310927 (to I.Y.). K.Y. is supported by the Karen Siem Fellowship for Women in Science; the Willner Family Center for Vascular Biology; the estate of Paul Ourieff; the Carolito Stiftung; Lois Rosen, Los Angeles, CA; and the Adelis Foundation. K.Y. is the incumbent of the Louis and Ida Rich Career Development Chair.

Author information

Authors and Affiliations

Authors

Contributions

J.N. and G.M. designed and conducted experiments, analysed data, and co-wrote the manuscript; Y.S. designed and conducted experiments on human ESCs and analysed data; T.L, L.A., O.M., A.J.-V. and M.S. conducted experiments and data analyses; I.A.-D. and V.K. conducted in vitro experiments, N.S. and T.H. conducted RNA-Seq experiments and data analyses; R.H. assisted with animal care and genotyping; L.G.-B. and J.W.A. generated transgenic lines; G.A. managed the fish facility; S.B-D. performed bioinformatics analyses; O.G. assisted with image processing analyses; P.S.C. provided the Tg(lyve1:EGFP)nz150 and Tg(lyve1:dsRed2)nz101 transgenic lines. W.H. and N.D.L. designed and supervised part of the experiments; I.Y. designed and supervised RNA-Seq experiments; J.H.H. supervised part of the hESCs experiments; K.Y. initiated and directed the study, designed experiments, analysed data and co-wrote the paper with input from all authors.

Corresponding author

Correspondence to K. Yaniv.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Mesoderm-derived angioblasts generate LECs through asymmetric cell division.

a, Snapshots from a time-lapse sequence of a Tg (fli1:nEGFP)y7 zebrafish embryo, showing the origin of a PAC cell (yellow) in the vPCV (nimaged embryos = 7). b, vPCV (left panel), and dPCV (right panel) Kaede photoconverted cells at 48 hpf. c, Kaede-photoswitched ‘medial’ (left panel) and ‘early lateral’ (right panel) angioblasts. d, Snapshots from a time-lapse sequence of a plcg1 mutant, showing the origin of a PAC cell (green) in the vPCV (nimaged embryos = 3). e, Quantification of symmetric and asymmetric division events in the vPCV and dPCV of double Tg(flt1_9a_cFos:GFP; lyve1:dsRed2 nz101) embryos (nimaged embryos = 6). Scale bars, 30 μm.

Extended Data Figure 2 Analysis of cell division in the zebrafish axial vessels.

a, Phospho-histone H3 staining shows no difference in the number of proliferative endothelial cells among the DA, dPCV and vPCV (n24 hpf embryos = 17, n26 hpf embryos = 16, n28 hpf embryos = 16, n30 hpf embryos = 16). b, Ectopic induction of Wnt5b in Tg(hsp70l:wnt5b; fli1:EGFP) does not result in enhanced proliferation of endothelial cells (26 hpf; ncontrol embryos = 15, nhsp70:wnt5b embryos = 8, 28 hpf; ncontrol embryos = 14, nhsp70:wnt5b embryos = 8, 30 hpf; ncontrol embryos = 14, nhsp70:wnt5b embryos = 10). Scale bar, 60 μm. Error bars, mean ± s.e.m.

Extended Data Figure 3 Fate map analysis of vPCV cells.

a, Schematic representation of the subintestinal plexus at 72 hpf. Subintestinal vein (SIV, green), interconnecting SI vessels (purple), supraintestinal artery (SIA, pink), posterior cardinal vein (PCV, blue), dorsal aorta (DA, red). b, Quantification of the number of intersegmental arteries (ISA) and intersegmental veins (ISV) in the first four segments of Tg(flt1_9a_cFos:GFP; lyve1:dsRed2) double transgenic embryos (nembryos = 41). IS# denotes the position of intersegmental vessel. c, Confocal images of Tg(lyve1:dsRed2) (left panel) and Tg(flt1_9a_cFos:GFP; lyve1:dsRed2) (right panel) embryos showing lyve1:dsred2+ endothelial cells in PACs, venous intersegmental vessels (ISVs), PCV and SIV and flt1_9a:GFP+ endothelial cells in the SIA. d, flt1_9a:GFP+ vPCV angioblast (light-blue arrowhead), divides asymmetrically (curved arrow) to generate cells that populate the SIV (31.5 hpf, white arrowhead), and the SIA (53.5 hpf, white arrowhead). Scale bar, 30 µm. Error bars, mean ± s.e.m.

Extended Data Figure 4 Transcriptional profiling of vPCV angioblasts.

a, Experimental setup used for RNA sequencing analysis of FACS isolated vPCV and dPCV cells. b, FACS isolation of green vs red (photoconverted) endothelial cells from Tg(fli1:gal4;uasKaede) embryos following photoswitching of dorsal or ventral PCV (nindependent experiments = 4). c, qRT–PCR analysis of selected candidates shows enrichment in ventral vs dorsal PCV cells (nindependent experiments = 2). d, Gene Ontology enrichment in vPCV vs dPCV cells (results represent 2 out of 4 independent biological repeats). Error bars, geometrical mean ± s.e.g.m.

Extended Data Figure 5 Endoderm-derived Wnt5b is required for lymphatic development.

a, PAC-containing segments in WT (arrows) and cas mutants (asterisks). b, In situ hybridization at 20 hpf showing expression of wnt5b mRNA (blue arrowhead) in the endoderm of WT embryos. c, PAC-containing segments in uninjected (UI) (arrows) and wnt5b MO-injected embryos (asterisks). d, ppt mutants injected with wnt5b MO (subdose) display significant reduction in PAC number (nUI embryos = 38, nwnt5b-MO embryos sub = 38, nppt-UI embryos = 34, nppt, wnt5b MO sub-embryos = 34; *P = 1.2 × 10−5). e, wnt5b morphants exhibit marked reduction in the number of thoracic duct-containing segments (asterisks) as compared to uninjected (UI) siblings (arrows) (nUI-embryos = 38, nwnt5b MO-embryos = 32; *P = 4.5 × 10−30). f, The number of flt1+ vPCV progenitors is not affected in wnt5b morphants (nUI-embryos = 31, nwnt5b-MO embryos = 31). Scale bars, a, c, 60 μm; b, e, f, 30 μm. Error bars, mean ± s.e.m.

Extended Data Figure 6 Wnt5b is not required for sprouting from the PCV.

a, Phenotypic analysis of Wnt5b overexpression in Tg(hsp70l:wnt5b-GFP; lyve1:dsRed2) embryos, following 25–30 min heat shock (HS), at 23, 25 and 27 hpf (23 hpf embryos nHS-25 min = 18, nHS-30 min = 14, nHS-40 min = 15, 25 hpf embryos nHS-25 min = 14; nHS-30 min = 17, nHS-40 min = 20, 27 hpf embryos nHS-25 min = 19, nHS-30 min = 17, nHS-40 min = 10). b, The number of vISVs vs aISVs is unaltered in wnt5b morphants as compared to Control MO-injected siblings (nControl MO-embryos = 43, nwnt5b MO-embryos = 41). c, flt1_9a+ vPCV cells are detected in the supraintestinal artery (SIA) and subintestinal vein (SIV) of wnt5b MO-injected embryos (nCtrl MO = 16, nwnt5b MO = 16). Scale bars, 60 μm. Error bars, mean ± s.e.m.

Extended Data Figure 7 Wnt5b induces the “angioblast-to-lymphatic” specification.

a, Selected frames from a time-lapse sequence of a Tg(fli1:gal4;uasKaede) embryo injected with wnt5b MO. Photoconverted vPCV cell (white arrow) divides normally (arrows at 48 hpf point to 2 daughter cells), but does not engage in dorsal migration to generate PACs. b, In situ hybridization of Ctrl MO-, and wnt5b MO-injected zebrafish at 30 hpf, with lyve1, sox18, nr2f2 and cdh5 probes, showing specific decrease in lymphatic marker expression in the floor of the PCV (white arrowheads) of wnt5b morphants. The pan-endothelial marker cdh5, as well as the arterial expression of sox18, remain unchanged in wnt5b morphants. c, vegfc and ccbe1 mRNA levels remain unaltered in sox32 and wnt5b morphants. d, Immunostaining of Prox1 shows marked increase in protein levels following ectopic activation of Wnt5b in Tg(hsp70l:wnt5b; fli1:EGFP) embryos (co-localization channel is shown in yellow, white arrowheads). e, qRT–PCR analysis of FLT4 and CDH5 in hESCs treated with WNT5B (nindependent-experiments = 3; *P = 0.03 by one sample t-test). Scale bars, 60 μm. Error bars, geometrical mean ± s.e.g.m.

Extended Data Figure 8 Wnt5b induces LEC specification through activation of canonical pathway.

a, PAC-containing segments (arrows) in wnt5b MO-injected mbl mutants (nwnt5bMO = 42, nmbl;wnt5bMO = 52; *P = 3.4 × 10−10). b, apc mutants (nWT = 18, napc = 19; *P = 0.0006), c, axin1 mRNA-injected embryos (nUI = 33, naxin-mRNA = 46; *P = 1.73 × 10−14), and d, IWR-1 treated embryos (nDMSO = 55, nIWR = 54; *P = 1.05 × 10−21). Scale bars, 60 μm. Error bars, mean ± s.e.m.

Extended Data Figure 9 Involvement of Tcf transcription factors in LEC specification.

a, PAC number remains unchanged in TNP-470 treated Tg(fli1:EGFP) embryos as compared to DMSO (control) (nDMSO = 19, nTNP-470 = 38). b, c, Quantification of PAC-containing segments in the trunk of UI, tcf7, lef1 and tcf4 MO-injected embryos (nUI-embryos = 59, ntcf7-MO embryos = 33, nlef1-MO embryos = 16, ntcf4-MO embryos = 25; *P = 4.53 × 10−25, **P = 9.62 × 10−8, ***P = 9.12 × 10−9). d, Photoswitching of vPCV cells in tcf7 MO-injected Tg(fli1:gal4;uasKaede) embryos (white arrowheads) at 24 hpf. At 48 hpf photoconverted, red vPCV cells (arrowheads) remain in the PCV and do not generate PACs. Scale bars, 30 μm. Error bars, mean ± s.e.m.

Extended Data Figure 10 Wnt5b-dependent activation of β-catenin/TCF in vPCV angioblasts.

a, Selected frames from a time-lapse sequence showing β-catenin/TCF activity in a single vPCV angioblast (light-blue arrowhead), which generates PACs (white arrowhead) through asymmetric cell division (n = 2). b, Confocal images of the trunks of Tg(7xTCFXla.Siam:nlsmCherry; fli1:EGFP) double transgenic zebrafish injected with wnt5b MO, showing decreased β-catenin/TCF activation in vPCV cells (quantified in c) (nUI-embryos = 18, nwnt5b-embryos = 17; *P = 4 × 10−5). Purple signal depicts co-localization of cytoplasmic EGFP and nuclear mCherry. Scale bars, 30 μm. Error bars, mean ± s.e.m.

Supplementary information

LEC progenitors originate in the floor of the PCV

This video shows time-lapse images of the trunk of a Tg(fli:EGFP) zebrafish between 24hpf-58hpf. Shown are two combined panels: the original images are on the left. On the right, a selected LEC progenitor was colored off-line in green to facilitate its visualization. Note its initial location at the ventral PCV (vPCV). (MP4 12837 kb)

LEC progenitors originate in the floor of the PCV in plcg1 mutant

This video shows time-lapseimages of the trunk of a plcg1 mutant, between 24hpf-50hpf. Shown are two combined panels: the original images are on the left. On the right, a selected LEC progenitor was colored off-line in green to facilitate its visualization. Note its initial location at the vPCV (green). Following asymmetric division, a daughter cell (blue), migrates dorsally to generate a PAC sprout. (MP4 15543 kb)

vPCV cells generate LECs through asymmetric cell division

This video shows time-lapse images of a photoswitched vPCV cell in the trunk of Tg(fli1:gal4;uasKaede) embryo between 25hpf-48hpf. Light-blue arrowhead points to a vPCV angioblast; white arrowhead points to daughter cell that generates PAC. The first frame was acquired before photoswitching. (MP4 6974 kb)

LECs arise from a pool of specialized angioblasts

This video shows time-lapse images of the trunk of Tg(flt1_9a_cFos:GFP; lyve1:dsRed) double ransgenic embryo between 30hpf-48hpf. Light-blue arrowheads point to flt1_9a:GFP+ vPCV angioblast; white arrowheads point to flt1_9a:GFP+ daughter cells that generate PACs, downregulate flt1_9a:GFP expression and upregulate lyve1:dsRed expression. (MP4 3896 kb)

PACs arise from prox1a-expressing LEC progenitors

This video shows time-lapse images of the trunk of Tg(fli1:EGFP; prox1a:KalT4-UAS:uncTagRFP) double transgenic embryo between 23-55 hpf. Cells showing co-localization were pseudo-coloredin yellow. The first cells expressing Prox1a are visible at ~22 hpf in the vPCV. Later on these cells divide and generate progeny that translocates dorsally and buds from the PCV to generate PACs. (MP4 7925 kb)

LEC progenitors do not generate PACs in wnt5b-MO injected embryo

This video shows time-lapse images of the trunk of a g(fli1a:nEGFP; fli1:dsRed) double transgenic embryo injected with wnt5b MO between 28hpf-44hpf. Shown are two combined panels: the original images are on the left.On the right panel, vPCV (colored) cells do not engage in dorsal migration to generate PACs, but undergo normal cell division. (MP4 5355 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicenboim, J., Malkinson, G., Lupo, T. et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature 522, 56–61 (2015). https://doi.org/10.1038/nature14425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14425

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing