Article | Published:

Whole–genome characterization of chemoresistant ovarian cancer

Nature volume 521, pages 489494 (28 May 2015) | Download Citation

  • A Corrigendum to this article was published on 21 October 2015


Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


Gene Expression Omnibus

Data deposits

The whole genome and transcriptome sequencing data have been deposited in the European Genome-phenome Archive (EGA) repository under the accession code EGAD00001000877. Genotyping, methylation and miRNA data sets have been submitted into the Gene Expression Omnibus (GEO) accession GSE65821. A complete list of the AOCS Study Group can be found at


  1. 1.

    et al. Rethinking ovarian cancer: recommendations for improving outcomes. Nature Rev. Cancer 11, 719–725 (2011).

  2. 2.

    et al. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J. Pathol. 221, 49–56 (2010).

  3. 3.

    The Cancer Genome Atlas Research Network. Integrated genomic analysis of ovarian cancer. Nature 474, 609–615 (2011).

  4. 4.

    et al. High-resolution single nucleotide polymorphism array analysis of epithelial ovarian cancer reveals numerous microdeletions and amplifications. Clin. Cancer Res. 13, 4731–4739 (2007).

  5. 5.

    et al. Emerging landscape of oncogenic signatures across human cancers. Nature Genet. 45, 1127–1133 (2013).

  6. 6.

    et al. Development of a functional assay for homologous recombination status in primary cultures of epithelial ovarian tumor and correlation with sensitivity to poly(ADP-ribose) polymerase inhibitors. Clin. Cancer Res. 16, 2344–2351 (2010).

  7. 7.

    et al. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J. Pathol. 231, 21–34 (2013).

  8. 8.

    et al. Clonal evolution of high-grade serous ovarian carcinoma from primary to recurrent disease. J. Pathol. 229, 515–524 (2013).

  9. 9.

    et al. LRP1B deletion in high-grade serous ovarian cancers is associated with acquired chemotherapy resistance to liposomal doxorubicin. Cancer Res. 72, 4060–4073 (2012).

  10. 10.

    et al. Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation. Cancer Res. 72, 5454–5462 (2012).

  11. 11.

    et al. Nonequivalent gene expression and copy number alterations in high-grade serous ovarian cancers with BRCA1 and BRCA2 mutations. Clin. Cancer Res. 19, 3474–3484 (2013).

  12. 12.

    et al. Intraepithelial T cells and prognosis in ovarian carcinoma: novel associations with stage, tumor type, and BRCA1 loss. Mod. Pathol. 22, 393–402 (2009).

  13. 13.

    et al. Morphologic patterns associated with BRCA1 and BRCA2 genotype in ovarian carcinoma. Mod. Pathol. 25, 625–636 (2012).

  14. 14.

    et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

  15. 15.

    & Combinatorics of the breakage-fusion-bridge mechanism. J. Comput. Biol. 19, 662–678 (2012).

  16. 16.

    et al. Punctuated evolution of prostate cancer genomes. Cell 153, 666–677 (2013).

  17. 17.

    et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

  18. 18.

    et al. Genome-wide DNA methylation patterns in pancreatic ductal adenocarcinoma reveal epigenetic deregulation of SLIT-ROBO, ITGA2 and MET signaling. Int. J. Cancer 135, 1110–1118 (2014).

  19. 19.

    et al. ESRRA-C11orf20 is a recurrent gene fusion in serous ovarian carcinoma. PLoS Biol. 9, e1001156 (2011).

  20. 20.

    et al. CDKN2D-WDFY2 is a cancer-specific fusion gene recurrent in high-grade serous ovarian carcinoma. PLoS Genet. 10, e1004216 (2014).

  21. 21.

    et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

  22. 22.

    et al. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas. Clin. Cancer Res. 15, 1417–1427 (2009).

  23. 23.

    et al. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin. Cancer Res. 14, 5198–5208 (2008).

  24. 24.

    et al. Prognostically relevant gene signatures of high-grade serous ovarian carcinoma. J. Clin. Invest. 123, 517–525 (2013).

  25. 25.

    et al. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29, 3008–3015 (2011).

  26. 26.

    Ovarian cancer development and metastasis. Am. J. Pathol. 177, 1053–1064 (2010).

  27. 27.

    et al. Secondary BRCA1 mutations in BRCA1-mutated ovarian carcinomas with platinum resistance. Cancer Res. 68, 2581–2586 (2008).

  28. 28.

    et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science 324, 1457–1461 (2009).

  29. 29.

    , , & Frequency of BRCA1 dysfunction in ovarian cancer. J. Natl. Cancer Inst. 94, 61–67 (2002).

  30. 30.

    et al. C. elegans whole-genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency. Genome Res. 24, 1624–1636 (2014).

  31. 31.

    et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451, 1111–1115 (2008).

  32. 32.

    et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451, 1116–1120 (2008).

  33. 33.

    et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

  34. 34.

    et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N. Engl. J. Med. 363, 943–953 (2010).

  35. 35.

    , , , & Taxane resistance in breast cancer: mechanisms, predictive biomarkers and circumvention strategies. Cancer Treat. Rev. 38, 890–903 (2012).

  36. 36.

    & P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr. Cancer Drug Targets 13, 326–346 (2013).

  37. 37.

    et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J. Clin. Oncol. 26, 2674–2682 (2008).

  38. 38.

    et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3, 68–81 (2013).

  39. 39.

    et al. Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma. Science 343, 189–193 (2014).

  40. 40.

    et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014).

  41. 41.

    et al. Definitions for response and progression in ovarian cancer clinical trials incorporating RECIST 1.1 and CA 125 agreed by the Gynecological Cancer Intergroup (GCIG). Int. J. Gynecol. Cancer 21, 419–423 (2011).

  42. 42.

    et al. Clinical trials of palliative chemotherapy in platinum-resistant or -refractory ovarian cancer: time to think differently? J. Clin. Oncol. 31, 2362 (2013).

  43. 43.

    et al. Genome Alteration Print (GAP): a tool to visualize and mine complex cancer genomic profiles obtained by SNP arrays. Genome Biol. 10, R128 (2009).

  44. 44.

    et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

  45. 45.

    et al. qpure: A tool to estimate tumor cellularity from genome-wide single-nucleotide polymorphism profiles. PLoS ONE 7, e45835 (2012).

  46. 46.

    & Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

  47. 47.

    et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  48. 48.

    et al. RNA-SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics 28, 1530–1532 (2012).

  49. 49.

    & RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).

  50. 50.

    et al. MapSplice: accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38, e178 (2010).

  51. 51.

    et al. Review of processing and analysis methods for DNA methylation array data. Br. J. Cancer 109, 1394–1402 (2013).

  52. 52.

    , & Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 8, 118–127 (2007).

  53. 53.

    et al. Somatic point mutation calling in low cellularity tumors. PLoS ONE 8, e74380 (2013).

  54. 54.

    et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

  55. 55.

    et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

  56. 56.

    et al. IntOGen: integration and data mining of multidimensional oncogenomic data. Nature Methods 7, 92–93 (2010).

  57. 57.

    , , , & Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25, 2865–2871 (2009).

  58. 58.

    et al. Integrative genomics viewer. Nature Biotechnol. 29, 24–26 (2011).

  59. 59.

    et al. Landscape of genomic alterations in cervical carcinomas. Nature 506, 371–375 (2014).

  60. 60.

    et al. Mutational processes molding the genomes of 21 breast cancers. Cell 149, 979–993 (2012).

  61. 61.

    & Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013).

  62. 62.

    et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).

Download references


The AOCS gratefully acknowledge the cooperation of the participating institutions in Australia, and also acknowledge the contribution of the study nurses, research assistants and all clinical and scientific collaborators including L. Galletta, C. Emmanuel, L. Bowes and J. Hallo. The authors acknowledge assistance from C. Anderson and D. Gwynne. The CASCADE investigators would like to thank the CASCADE Management Committee, all staff at the Victorian Institute of Forensic Medicine, D. Stevens and Tobin Brothers Funerals. The investigators would like to thank the Australia New Zealand Gynaecological Oncology Group (ANZGOG) and the women, and their families, who participated in these research programs. This work was supported by the National Health and Medical Research Council of Australia (NHMRC ID631701), Worldwide Cancer Research (09-0676) and Cancer Australia (1004673). The Australian Ovarian Cancer Study was supported by the US Army Medical Research and Materiel Command under DAMD17-01-1-0729, The Cancer Council Victoria, Queensland Cancer Fund, The Cancer Council New South Wales, The Cancer Council South Australia, The Cancer Foundation of Western Australia, The Cancer Council Tasmania and the National Health and Medical Research Council of Australia (NHMRC; ID400413, ID400281). The AOCS gratefully acknowledges additional support from S. Boldeman, the Agar family, Ovarian Cancer Australia and Ovarian Cancer Action (UK). The Gynaecological Oncology Biobank at Westmead, a member of the Australasian Biospecimen Network-Oncology group, was supported by grants from the NHMRC (ID 310670, ID 628903) and the Cancer Institute of New South Wales. The CASCADE study was supported by the Peter MacCallum Cancer Centre Foundation, and in kind by the Victorian Institute of Forensic Medicine and Tobin Brothers Funerals.

Author information

Author notes

    • Ann-Marie Patch
    • , Elizabeth L. Christie
    • , Dariush Etemadmoghadam
    •  & Dale W. Garsed

    These authors contributed equally to this work.

    • Anna deFazio
    • , Sean M. Grimmond
    •  & David D. L. Bowtell

    These authors jointly supervised this work.


  1. Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia

    • Ann-Marie Patch
    • , Katia Nones
    • , Peter J. Bailey
    • , Karin S. Kassahn
    • , Felicity Newell
    • , Michael C. J. Quinn
    • , Stephen Kazakoff
    • , Kelly Quek
    • , David K. Miller
    • , Ivon Harliwong
    • , Craig Nourse
    • , Ehsan Nourbakhsh
    • , Suzanne Manning
    • , Senel Idrisoglu
    • , Timothy J. C. Bruxner
    • , Angelika N. Christ
    • , Barsha Poudel
    • , Oliver Holmes
    • , Matthew Anderson
    • , Conrad Leonard
    • , Scott Wood
    • , Darrin F. Taylor
    • , Qinying Xu
    • , J. Lynn Fink
    • , Nick Waddell
    • , Shivashankar H. Nagaraj
    • , Emma Markham
    • , Peter J. Wilson
    • , John V. Pearson
    • , Nicola Waddell
    •  & Sean M. Grimmond
  2. QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia

    • Ann-Marie Patch
    • , Katia Nones
    • , Michael C. J. Quinn
    • , Stephen Kazakoff
    • , Oliver Holmes
    • , Conrad Leonard
    • , Scott Wood
    • , Qinying Xu
    • , John V. Pearson
    •  & Nicola Waddell
  3. Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia

    • Elizabeth L. Christie
    • , Dariush Etemadmoghadam
    • , Dale W. Garsed
    • , Sian Fereday
    • , Prue Cowin
    • , Kathryn Alsop
    • , Huei San Leong
    • , Anne Hamilton
    • , Linda Mileshkin
    • , George Au-Yeung
    • , Walid Azar
    • , Chris Mitchell
    • , Nadia Traficante
    • , Joy Hendley
    • , Heather Thorne
    • , Mark Shackleton
    • , Gisela Mir Arnau
    • , Richard W. Tothill
    • , Timothy P. Holloway
    • , Timothy Semple
    • , Jason Ellul
    • , Maria A. Doyle
    • , Ravikiran Vedururu
    •  & David D. L. Bowtell
  4. Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia

    • Dariush Etemadmoghadam
    • , Paul Waring
    •  & David D. L. Bowtell
  5. Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia

    • Dariush Etemadmoghadam
    • , Linda Mileshkin
    • , Mark Shackleton
    • , Richard W. Tothill
    •  & David D. L. Bowtell
  6. The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06030, USA

    • Joshy George
  7. WolfsonWohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK

    • Peter J. Bailey
    •  & Sean M. Grimmond
  8. Technology Advancement Unit, Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia

    • Karin S. Kassahn
  9. Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK

    • Charlotte Wilhelm-Benartzi
    • , Ed Curry
    • , Euan Stronach
    • , Hani Gabra
    • , Robert Brown
    •  & David D. L. Bowtell
  10. Department of Medicine, University of Melbourne, Parkville, Victoria 3052, Australia

    • Anne Hamilton
  11. The Royal Women’s Hospital, Parkville, Victoria 3052, Australia

    • Anne Hamilton
    •  & Jan Pyman
  12. Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia

    • Catherine Kennedy
    • , Jillian Hung
    • , Yoke-Eng Chiew
    •  & Anna deFazio
  13. Crown Princess Mary Cancer Centre and University of Sydney at Westmead Hospital, Westmead, Sydney, New South Wales 2145, Australia

    • Paul Harnett
  14. Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2031, Australia

    • Michael Friedlander
  15. Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia

    • Stephen Cordner
    • , Patricia O’Brien
    • , Jodie Leditschke
    • , Greg Young
    •  & Kate Strachan
  16. Victorian Life Sciences Computation Initiative, Carlton, Victoria 3053, Australia

    • Andrew Lonie
  17. La Trobe Institute for Molecular Science, Bundoora, Victoria 3083, Australia

    • Nathan Hall
  18. Dana-Farber Cancer Institute, Boston, Massachusetts 02115-5450, USA

    • Ronny Drapkin
  19. University of Chicago, Chicago, Illinois 60637, USA

    • Andrea Jewell
    •  & Ernst Lengyel
  20. The University of Western Australia, Crawley, Western Australia 6009, Australia

    • Collin Stewart
  21. Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia

    • David D. L. Bowtell
  22. Department of Obstetrics and Gynaecology, The University of Melbourne, and The Royal Women’s Hospital, Parkville, Victoria 3052, Australia

    • Michael Quinn
    •  & Orla McNally


  1. The Australian Ovarian Cancer Study Group

    A list of authors and affiliations appears in the Supplementary Information


  1. Search for Ann-Marie Patch in:

  2. Search for Elizabeth L. Christie in:

  3. Search for Dariush Etemadmoghadam in:

  4. Search for Dale W. Garsed in:

  5. Search for Joshy George in:

  6. Search for Sian Fereday in:

  7. Search for Katia Nones in:

  8. Search for Prue Cowin in:

  9. Search for Kathryn Alsop in:

  10. Search for Peter J. Bailey in:

  11. Search for Karin S. Kassahn in:

  12. Search for Felicity Newell in:

  13. Search for Michael C. J. Quinn in:

  14. Search for Stephen Kazakoff in:

  15. Search for Kelly Quek in:

  16. Search for Charlotte Wilhelm-Benartzi in:

  17. Search for Ed Curry in:

  18. Search for Huei San Leong in:

  19. Search for Anne Hamilton in:

  20. Search for Linda Mileshkin in:

  21. Search for George Au-Yeung in:

  22. Search for Catherine Kennedy in:

  23. Search for Jillian Hung in:

  24. Search for Yoke-Eng Chiew in:

  25. Search for Paul Harnett in:

  26. Search for Michael Friedlander in:

  27. Search for Michael Quinn in:

  28. Search for Jan Pyman in:

  29. Search for Stephen Cordner in:

  30. Search for Patricia O’Brien in:

  31. Search for Jodie Leditschke in:

  32. Search for Greg Young in:

  33. Search for Kate Strachan in:

  34. Search for Paul Waring in:

  35. Search for Walid Azar in:

  36. Search for Chris Mitchell in:

  37. Search for Nadia Traficante in:

  38. Search for Joy Hendley in:

  39. Search for Heather Thorne in:

  40. Search for Mark Shackleton in:

  41. Search for David K. Miller in:

  42. Search for Gisela Mir Arnau in:

  43. Search for Richard W. Tothill in:

  44. Search for Timothy P. Holloway in:

  45. Search for Timothy Semple in:

  46. Search for Ivon Harliwong in:

  47. Search for Craig Nourse in:

  48. Search for Ehsan Nourbakhsh in:

  49. Search for Suzanne Manning in:

  50. Search for Senel Idrisoglu in:

  51. Search for Timothy J. C. Bruxner in:

  52. Search for Angelika N. Christ in:

  53. Search for Barsha Poudel in:

  54. Search for Oliver Holmes in:

  55. Search for Matthew Anderson in:

  56. Search for Conrad Leonard in:

  57. Search for Andrew Lonie in:

  58. Search for Nathan Hall in:

  59. Search for Scott Wood in:

  60. Search for Darrin F. Taylor in:

  61. Search for Qinying Xu in:

  62. Search for J. Lynn Fink in:

  63. Search for Nick Waddell in:

  64. Search for Ronny Drapkin in:

  65. Search for Euan Stronach in:

  66. Search for Hani Gabra in:

  67. Search for Robert Brown in:

  68. Search for Andrea Jewell in:

  69. Search for Shivashankar H. Nagaraj in:

  70. Search for Emma Markham in:

  71. Search for Peter J. Wilson in:

  72. Search for Jason Ellul in:

  73. Search for Orla McNally in:

  74. Search for Maria A. Doyle in:

  75. Search for Ravikiran Vedururu in:

  76. Search for Collin Stewart in:

  77. Search for Ernst Lengyel in:

  78. Search for John V. Pearson in:

  79. Search for Nicola Waddell in:

  80. Search for Anna deFazio in:

  81. Search for Sean M. Grimmond in:

  82. Search for David D. L. Bowtell in:


Project supervision: J.V.P., Nicola.W., A.D.F., S.M.G., D.D.L.B. Study design: A.M.P., E.L.C., D.E., D.W.G., S.F., P.C., Nicola.W., A.D.F., S.M.G., D.D.L.B. Sample acquisition: S.F., K.A., A.O.C.S., A.H., L.M., O.M.N., C.K., J.H., Y.E.C., P.H., M.F., M.Q., J.P., S.C., P.O.B., J.L., P.W., N.T., H.T., M.S., R.D., E.S., H.G., A.J., O.M.N., E.L., A.D.F., D.D.L.B. Sample preparation: E.L.C., D.E., D.W.G., P.C., Y.E.C., P.H., C.M., J.H. Data acquisition: E.L.C., D.E., D.W.G., S.F., D.K.M., G.M.A., T.P.H., T.S., I.H., C.N., E.N., S.M., S.I., T.J.C.B., A.N.C. Performed patient autopsy: G.Y., K.S. Sequence data management, alignment and mutation identification: A.M.P., K.N., F.N., S.K., O.H., M.A., C.L., S.W., Q.X., J.L.F., Nick.W., S.H.N., P.J.W., J.V.P., S.M.G. Genome informatics, software tool development: A.M.P., P.J.B., K.S.K., F.N., S.K., B.P., O.H., M.A., C.L., S.W., D.F.T., Q.X., J.L.F., Nick.W., J.V.P., Nicola.W. Data analysis: A.M.P., E.L.C., D.E., D.W.G., J.G., K.N., P.J.B., K.S.K., M.C.JQ., K.Q., C.W.B., E.C., H.S.L., G.A.Y., W.A., R.W.T., A.L., N.H., R.B., J.E., M.D., R.V., C.S., J.V.P., Nicola.W., S.M.G. Perform molecular/verification analysis: E.L.C., K.N., S.M., E.M. Wrote the manuscript: A.M.P., E.L.C., D.E., D.W.G., Nicola.W., A.D.F., S.M.G., D.D.L.B.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David D. L. Bowtell.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text, Data and Figures (see Contents list for details), a list of the AOCS Study Group Authors and Affiliations and additional references.

Zip files

  1. 1.

    Supplementary Tables

    This zipped file contains Supplementary Tables 1-18.

About this article

Publication history





Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.