Electron pairing without superconductivity


Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor1. It exhibits an extremely low carrier density threshold for superconductivity2, and possesses a phase diagram similar to that of high-temperature superconductors3,4—two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances—paired electron states—that bifurcate above a critical pairing field Bp of about 1–4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Device schematic and transport characteristics.
Figure 2: Out-of-plane magnetic field dependence of device A transport characteristics at T = 50 mK.
Figure 3: Temperature dependence of Bp.
Figure 4: Comparison between experiment and attractive Hubbard model.


  1. 1

    Schooley, J. F., Hosler, W. R. & Cohen, M. L. Superconductivity in semiconducting SrTiO3 . Phys. Rev. Lett. 12, 474–475 (1964)

    CAS  Article  ADS  Google Scholar 

  2. 2

    Lin, X., Zhu, Z., Fauqué, B. & Behnia, K. Fermi surface of the most dilute superconductor. Phys. Rev. X 3, 021002 (2013)

    Google Scholar 

  3. 3

    Caviglia, A. D. et al. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456, 624–627 (2008)

    CAS  Article  ADS  PubMed  Google Scholar 

  4. 4

    Richter, C. et al. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502, 528–531 (2013)

    CAS  Article  ADS  PubMed  Google Scholar 

  5. 5

    Ueno, K. et al. Electric-field-induced superconductivity in an insulator. Nature Mater. 7, 855–858 (2008)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Eagles, D. M. Possible pairing without superconductivity at low carrier concentrations in bulk and thin-film superconducting semiconductors. Phys. Rev. 186, 456–463 (1969)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Binnig, G., Baratoff, A., Hoenig, H. E. & Bednorz, J. G. Two-band superconductivity in Nb-doped SrTiO3 . Phys. Rev. Lett. 45, 1352–1355 (1980)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004)

    CAS  Article  ADS  PubMed  Google Scholar 

  9. 9

    Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007)

    CAS  Article  ADS  PubMed  Google Scholar 

  10. 10

    von Delft, J., Zaikin, A. D., Golubev, D. S. & Tichy, W. Parity-affected superconductivity in ultrasmall metallic grains. Phys. Rev. Lett. 77, 3189–3192 (1996)

    CAS  Article  ADS  PubMed  Google Scholar 

  11. 11

    Tinkham, M., Ralph, D. C., Black, C. T. & Hergenrother, J. M. Discrete energy levels and superconductivity in nanometer-scale Al particles. Czech. J. Phys. 46, 3139–3145 (1996)

    CAS  Article  Google Scholar 

  12. 12

    Cen, C. et al. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nature Mater. 7, 298–302 (2008)

    CAS  Article  ADS  Google Scholar 

  13. 13

    Cen, C., Thiel, S., Mannhart, J. & Levy, J. Oxide nanoelectronics on demand. Science 323, 1026–1030 (2009)

    CAS  Article  ADS  PubMed  Google Scholar 

  14. 14

    Veazey, J. P. et al. Oxide-based platform for reconfigurable superconducting nanoelectronics. Nanotechnology 24, 375201 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. 15

    Cheng, G. L. et al. Sketched oxide single-electron transistor. Nature Nanotechnol. 6, 343–347 (2011)

    CAS  Article  ADS  Google Scholar 

  16. 16

    Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. M. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)

    CAS  Article  ADS  Google Scholar 

  17. 17

    Anderson, P. W. Theory of dirty superconductors. J. Phys. Chem. Solids 11, 26–30 (1959)

    CAS  Article  ADS  MATH  Google Scholar 

  18. 18

    Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett. 85, 1504–1507 (2000)

    CAS  Article  ADS  PubMed  Google Scholar 

  19. 19

    Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998)

    CAS  Article  ADS  Google Scholar 

  20. 20

    Hofheinz, M. et al. Individual charge traps in silicon nanowires — measurements of location, spin and occupation number by Coulomb blockade spectroscopy. Eur. Phys. J. B 54, 299–307 (2006)

    CAS  Article  ADS  Google Scholar 

  21. 21

    Matveev, K. A. & Larkin, A. I. Parity effect in ground state energies of ultrasmall superconducting grains. Phys. Rev. Lett. 78, 3749–3752 (1997)

    CAS  Article  ADS  Google Scholar 

  22. 22

    Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Micnas, R., Ranninger, J. & Robaszkiewicz, S. Superconductivity in narrow-band systems with local nonretarded attractive interactions. Rev. Mod. Phys. 62, 113–171 (1990)

    CAS  Article  ADS  Google Scholar 

  24. 24

    Matsushita, Y., Bluhm, H., Geballe, T. H. & Fisher, I. R. Evidence for charge Kondo effect in superconducting Tl-doped PbTe. Phys. Rev. Lett. 94, 157002 (2005)

    CAS  Article  ADS  PubMed  Google Scholar 

  25. 25

    Dzero, M. & Schmalian, J. Superconductivity in charge Kondo systems. Phys. Rev. Lett. 94, 157003 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. 26

    Alexandrov, A. S. in Polarons in Advanced Materials (ed. Alexandrov, A. S.) Ch. 7 257–310 (Springer Series in Materials Science, Vol. 103, Springer, 2007)

    Google Scholar 

  27. 27

    Ben Shalom, M., Sachs, M., Rakhmilevitch, D., Palevski, A. & Dagan, Y. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104, 126802 (2010)

    CAS  Article  ADS  PubMed  Google Scholar 

  28. 28

    Caviglia, A. D. et al. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104, 126803 (2010)

    CAS  Article  ADS  PubMed  Google Scholar 

  29. 29

    Kim, M., Kozuka, Y., Bell, C., Hikita, Y. & Hwang, H. Y. Intrinsic spin-orbit coupling in superconducting delta-doped SrTiO3 heterostructures. Phys. Rev. B 86, 085121 (2012)

    Article  ADS  CAS  Google Scholar 

  30. 30

    Zwierlein, M. W., Abo-Shaeer, J. R., Schirotzek, A., Schunck, C. H. & Ketterle, W. Vortices and superfluidity in a strongly interacting Fermi gas. Nature 435, 1047–1051 (2005)

    CAS  Article  ADS  PubMed  Google Scholar 

  31. 31

    Bi, F. et al. “Water-cycle” mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97, 173110 (2010)

    Article  ADS  CAS  Google Scholar 

  32. 32

    Levy, A. et al. Writing and low-temperature characterization of oxide nanostructures. J. Vis. Exp. 89, e51886 (2014)

    Google Scholar 

  33. 33

    Irvin, P. et al. Rewritable nanoscale oxide photodetector. Nature Photon. 4, 849–852 (2010)

    CAS  Article  ADS  Google Scholar 

  34. 34

    Ma, Y. et al. Broadband terahertz generation and detection at 10 nm scale. Nano Lett. 13, 2884–2888 (2013)

    CAS  Article  ADS  PubMed  Google Scholar 

  35. 35

    Ralph, D. C., Black, C. T. & Tinkham, M. Spectroscopic measurements of discrete electronic states in single metal particles. Phys. Rev. Lett. 74, 3241–3244 (1995)

    CAS  Article  ADS  PubMed  Google Scholar 

  36. 36

    Beenakker, C. W. J. Theory of Coulomb-blockade oscillations in the conductance of a quantum dot. Phys. Rev. B 44, 1646–1656 (1991)

    CAS  Article  ADS  Google Scholar 

  37. 37

    Müller, K. A. & Burkard, H. SrTiO3 — Intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19, 3593–3602 (1979)

    Article  ADS  Google Scholar 

  38. 38

    Santander-Syro, A. F. et al. Two-dimensional electron gas with universal subbands at the surface of SrTiO3 . Nature 469, 189–193 (2011)

    CAS  Article  ADS  PubMed  Google Scholar 

  39. 39

    Averin, D. V. & Nazarov, Y. V. Single-electron charging of a superconducting island. Phys. Rev. Lett. 69, 1993–1996 (1992)

    CAS  Article  ADS  PubMed  Google Scholar 

  40. 40

    Schlottmann, P. Exact results for highly correlated electron systems in one dimension. Int. J. Mod. Phys. B 11, 355–667 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. 41

    Lin, H. Q. Dilute gas of electron pairs in the t-J model. Phys. Rev. B 44, 4674–4676 (1991)

    CAS  Article  ADS  Google Scholar 

  42. 42

    Hellberg, C. S. & Manousakis, E. 2-dimensional t-J model at low electron density. Phys. Rev. B 52, 4639–4642 (1995)

    CAS  Article  ADS  Google Scholar 

  43. 43

    Cullum, J. & Willoughby, R. A. Computing eigenvalues of very large symmetric-matrices — an implementation of a Lanczos-algorithm with no reorthogonalization. J. Comput. Phys. 44, 329–358 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. 44

    Cullum, J. & Willoughby, R. A. A survey of Lanczos procedures for very large real symmetric eigenvalue problems. J. Comput. Appl. Math. 12–13, 37–60 (1985)

    Article  MATH  Google Scholar 

  45. 45

    Hellberg, C. S. in Computer Simulation Studies in Condensed Matter Physics XIII (eds Landau, D. P., Lewis, S. P. & Schüttler, H. B.) 43–52 (Springer, 2000)

    Google Scholar 

  46. 46

    Hellberg, C. S. Theory of the reentrant charge-order transition in the manganites. J. Appl. Phys. 89, 6627–6629 (2001)

    CAS  Article  ADS  Google Scholar 

  47. 47

    Anderson, P. W. Model for electronic structure of amorphous semiconductors. Phys. Rev. Lett. 34, 953–955 (1975)

    Article  ADS  Google Scholar 

  48. 48

    Ashoori, R. C. et al. Single-electron capacitance spectroscopy of discrete quantum levels. Phys. Rev. Lett. 68, 3088–3091 (1992)

    CAS  Article  ADS  Google Scholar 

  49. 49

    Alt, H. C. Experimental evidence for a negative-U center in gallium arsenide related to oxygen. Phys. Rev. Lett. 65, 3421–3424 (1990)

    CAS  Article  ADS  PubMed  Google Scholar 

  50. 50

    Geballe, T. H. & Kivelson, S. A. Paired insulators and high temperature superconductors. Preprint at http://arXiv.org/abs/1406.3759 (2014)

  51. 51

    Stashans, A., Pinto, H. & Sanchez, P. Superconductivity and Jahn-Teller polarons in titanates. J. Low Temp. Phys. 130, 415–423 (2003)

    CAS  Article  ADS  Google Scholar 

  52. 52

    Gervais, F., Servoin, J. L., Baratoff, A., Bednorz, J. G. & Binnig, G. Temperature dependence of plasmons in Nb-doped SrTiO3 . Phys. Rev. B 47, 8187–8194 (1993)

    CAS  Article  ADS  Google Scholar 

  53. 53

    van Mechelen, J. L. M. et al. Electron-phonon interaction and charge carrier mass enhancement in SrTiO3 . Phys. Rev. Lett. 100, 226403 (2008)

    CAS  Article  ADS  PubMed  Google Scholar 

  54. 54

    Kolodiazhnyi, T. & Wimbush, S. C. Spin-singlet small bipolarons in Nb-doped BaTiO3 . Phys. Rev. Lett. 96, 246404 (2006)

    CAS  Article  ADS  PubMed  Google Scholar 

  55. 55

    Jung, S. W., Fujisawa, T., Hirayama, Y. & Jeong, Y. H. Background charge fluctuation in a GaAs quantum dot device. Appl. Phys. Lett. 85, 768–770 (2004)

    CAS  Article  ADS  Google Scholar 

  56. 56

    Bolotin, K. I., Kuemmeth, F., Pasupathy, A. N. & Ralph, D. C. Metal-nanoparticle single-electron transistors fabricated using electromigration. Appl. Phys. Lett. 84, 3154–3156 (2004)

    CAS  Article  ADS  Google Scholar 

Download references


We thank A. Akhmerov, A. Annadi, S. Frolov, R. Lutchyn, C. Nayak and D. Pekker for discussions. This work was supported by ARO MURI W911NF-08-1-0317 (J.L.), AFOSR MURI FA9550-10-1-0524 (C.-B.E., J.L.) and FA9550-12-1-0342 (C.-B.E.), grants from the National Science Foundation DMR-1104191 (J.L.), DMR-1124131 (C.-B.E., J.L.) and DMR-1234096 (C.-B.E.), and the Office of Naval Research through the Naval Research Laboratory’s Basic Research Program (C.S.H.).

Author information




G.C. and M.T. did most of the design and fabrication of the devices, performed the experiments and wrote the manuscript. S.L. and J.P.V. contributed to measurements. M.H. patterned the interface electrodes. P.I. contributed to manuscript writing and measurement set-up. S.R. and H.L. grew the samples. C.-B.E. supervised sample growth and reviewed the manuscript. C.S.H. performed theoretical calculations and co-wrote the manuscript. J.L. supervised all the related experiment procedures and co-wrote the manuscript.

Corresponding author

Correspondence to Jeremy Levy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Nanoscale potential barrier engineering and low-temperature transport characteristics.

a, Single-barrier device schematic. It has the same structure as device A except that only one barrier is integrated in the design. b, Resistance change during barrier cutting (Methods); t is time. c, The differential conductance dI/dV as a function of Vsg at T = 75 mK. The wire can be pinched off by Vsg at the barrier site, as the wire conductance becomes negligibly small in lower Vsg values.

Extended Data Figure 2 Transport properties of three LQD = 500 nm SET devices of different single barrier heights at T = 50 mK.

Plots show colour-coded dI/dV as a function of Vsg and voltage across the QDs in devices F (V34F), G (V34G) and H (V34H). a, Device F (ΔR/2 = 20 kΩ) requires a back gate voltage Vbg applied on the substrate of −5.6 V to pinch off the device since Vsg has limited tunability due to leakage at high absolute values. b, Device G (ΔR/2 = 110 kΩ) shows similar properties to device A. c, Device H (ΔR/2 = 305 kΩ) shows no conductance diamonds.

Extended Data Figure 3 Transport characteristics due to barrier confinement of device A.

a, Zero-bias line cut of the dI/dV map in b; filled black symbols show positions of line cuts displayed in ce. c–e, Full suppression of transport in device A at Vsg = −25 mV (c), resonant tunnelling transport at Vsg = −19 mV (d), and fully superconducting transport at Vsg = 0 mV (e).

Extended Data Figure 4 Global shift correction of data from device A.

a, Original data for Figs 2f and 4a in the main text; B, applied magnetic field. The global shift is illustrated by the red trace, δVsg(B). b, The same data shown in Figs 2f and 4a in the main text that are corrected by Vsg(B) = Vsg0(B) − δVsg(B).

Extended Data Figure 5 Three-dimensional ‘waterfall’ plot of the magnetic-field dependence of ZBPs (same data as shown in Fig. 2f).

Plot shows lock-in dI/dV data at small (100 μV) bias as a function of Vsg, taken as the magnetic field is swept from −9 T to 9 T (additional right-axis).

Extended Data Figure 6 Transport characteristics of devices B, C, D and E, which are all of the same geometry as device A.

Device letter is shown at lower right-hand corner of all plots. a, Device B dI/dV (colour coded) as a function of Vsg and V34 at Vbg = −0.7 V and T = 100 mK. A small gap (4Δ) close to zero-bias in the diamonds is due to the absence of normal carriers in the superconducting source/drain leads. b, Device B ZBP splitting in an out-of-plane magnetic field B, which is the same data as Fig. 3a in the main text. c, Device C dI/dV as a function of Vsg and V34 at Vbg = −4.4 V and T = 100 mK. d, Device C ZBP splitting in an out-of-plane magnetic field. e, Device D dI/dV as a function of Vsg and V34 at Vbg = −1.4 V and T = 100 mK. f, Device D ZBP splitting in an out-of-plane magnetic field. g, Device E dI/dV dependent on Vsg and V34 at Vbg = −2.2 V and T = 100 mK. h, Device E ZBP splitting in an out-of-plane magnetic field.

Extended Data Figure 7 Parity effect.

a, Energies Ei of the Hubbard model (equation (1) in main text) of a one-dimensional 16-site chain with open boundary conditions, t = 1 meV, U = −0.8 meV, and B = 0 for fillings Ne ≤ 16. The slope of each line is proportional to −Ne; red (blue) lines have even (odd) Ne. For all chemical potentials µ, the ground state has even Ne. b, Energies of the Hubbard model for the same parameters as a shifted by a quadratic function of µ, Ei*(µ) = Ei(µ) + 2, where c is arbitrary. The lowest energy for each value of µ is easier to discern. The ground state always has even Ne.

Extended Data Figure 8 Phase diagram of the Hubbard model on a one-dimensional 16-site chain with t = 1 meV and U = −0.8 meV.

The total number of electrons Ne and total spin S are labelled for some of the larger phases as Ne(S). The quantum numbers of the other phases can be deduced from their neighbours.

Extended Data Table 1 Parameters of eight devices

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Tomczyk, M., Lu, S. et al. Electron pairing without superconductivity. Nature 521, 196–199 (2015). https://doi.org/10.1038/nature14398

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing