Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate change and the permafrost carbon feedback


Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Soil organic carbon maps.
Figure 2: Potential cumulative carbon release.
Figure 3: Model estimates of potential cumulative carbon release from thawing permafrost by 2100, 2200, and 2300.
Figure 4: Abundance of abrupt thaw features in lowland and upland settings in Alaska.


  1. 1

    IPCC. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1535 (Cambridge Univ. Press, 2013)

  2. 2

    Brown, J. & Romanovsky, V. E. Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century. Permafr. Periglac. Process. 19, 255–260 (2008)

    Article  Google Scholar 

  3. 3

    Romanovsky, V. E. et al. Thermal state of permafrost in Russia. Permafr. Periglac. Process. 21, 136–155 (2010)

    Article  Google Scholar 

  4. 4

    Romanovsky, V. E. et al. Permafrost (Arctic Report Card 2011) (2013)

  5. 5

    Zimov, S. A., Schuur, E. A. G. & Chapin, F. S. Permafrost and the global carbon budget. Science 312, 1612–1613 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. 6

    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009)

    Article  ADS  CAS  Google Scholar 

  7. 7

    Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. Bioscience 58, 701–714 (2008)

    Article  Google Scholar 

  8. 8

    Whiteman, G., Hope, C. & Wadhams, P. Climate science: vast costs of Arctic change. Nature 499, 401–403 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. 9

    National Research Council. Abrupt Impacts of Climate Change: Anticipating Surprises (The National Academies Press, 2013)

  10. 10

    Schädel, C. et al. Short communication on network related activities: research coordination network on the vulnerability of permafrost carbon. Frozen Ground 37, 7 (2013)

    Google Scholar 

  11. 11

    Schuur, E. A. G. et al. Research coordination network on the vulnerability of permafrost carbon. Frozen Ground 35, 6 (2011)

    Google Scholar 

  12. 12

    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014)Revised and updated current state of knowledge on permafrost soil organic carbon stocks at circumpolar scales.

    Article  ADS  Google Scholar 

  13. 13

    Zimov, S. A. et al. Permafrost carbon: stock and decomposability of a globally significant carbon pool. Geophys. Res. Lett. 33, L20502 (2006)

    Article  ADS  CAS  Google Scholar 

  14. 14

    Ping, C.-L. et al. High stocks of soil organic carbon in the North American Arctic region. Nature Geosci. 1, 615–619 (2008)

    Article  ADS  CAS  Google Scholar 

  15. 15

    Harden, J. W. et al. Field information links permafrost carbon to physical vulnerabilities of thawing. Geophys. Res. Lett. 39, L15704 (2012)Provides cumulative distributions of active layer thickness under current and future climates and estimates the amounts of newly thawed carbon and nitrogen.

    Article  ADS  CAS  Google Scholar 

  16. 16

    Strauss, J. et al. The deep permafrost carbon pool of the yedoma region in Siberia and Alaska. Geophys. Res. Lett. 40, 6165–6170 (2013)Quantifies the organic carbon pool for yedoma deposits and thermokarst deposits in Siberia and Alaska.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Grosse, G. et al. Distribution of late Pleistocene ice-rich syngenetic permafrost of the Yedoma Suite in east and central Siberia, Russia. US Geol. Surv. Open File Rep. 2013–1078, 1–37 (2013)

    Google Scholar 

  18. 18

    Walter Anthony, K. M. et al. A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511, 452–456 (2014)

    Article  ADS  CAS  Google Scholar 

  19. 19

    Mishra, U. et al. Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environ. Res. Lett. 8, 035020 (2013)

    Article  ADS  CAS  Google Scholar 

  20. 20

    Hugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3–13 (2013)

    Article  ADS  Google Scholar 

  21. 21

    Jobbágy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000)

    Article  Google Scholar 

  22. 22

    Schirrmeister, L. et al. Late Quaternary paleoenvironmental records from the western Lena Delta, Arctic Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 175–196 (2011)

    Article  Google Scholar 

  23. 23

    Kanevskiy, M., Shur, Y., Fortier, D., Jorgenson, M. T. & Stephani, E. Cryostratigraphy of late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River exposure. Quat. Res. 75, 584–596 (2011)

    Article  CAS  Google Scholar 

  24. 24

    Schirrmeister, L. et al. Fossil organic matter characteristics in permafrost deposits of the northeast Siberian Arctic. J. Geophys. Res. Biogeosci. 116, G00M02 (2011)

    Article  CAS  Google Scholar 

  25. 25

    Hugelius, G. et al. High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic. J. Geophys. Res. Biogeosci. 116, G03024 (2011)

    Article  ADS  CAS  Google Scholar 

  26. 26

    Brosius, L. S. et al. Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation. J. Geophys. Res. Biogeosci. 117, G01022 (2012)

    Article  ADS  CAS  Google Scholar 

  27. 27

    McGuire, A. D. et al. Sensitivity of the carbon cycle in the Arctic to climate change. Ecol. Monogr. 79, 523–555 (2009)

    Article  Google Scholar 

  28. 28

    Walter, K. M., Edwards, M. E., Grosse, G., Zimov, S. A. & Chapin, F. S. Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation. Science 318, 633–636 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. 29

    Romanovskii, N. N., Hubberten, H. W., Gavrilov, A. V., Eliseeva, A. A. & Tipenko, G. S. Offshore permafrost and gas hydrate stability zone on the shelf of East Siberian seas. Geo-Mar. Lett. 25, 167–182 (2005)

    Article  ADS  CAS  Google Scholar 

  30. 30

    Nicolsky, D. J. et al. Modeling sub-sea permafrost in the East Siberian Arctic Shelf: the Laptev Sea region. J. Geophys. Res. Earth Surf. 117, F03028 (2012)

    Article  ADS  Google Scholar 

  31. 31

    Dutta, K., Schuur, E. A. G., Neff, J. C. & Zimov, S. A. Potential carbon release from permafrost soils of Northeastern Siberia. Glob. Change Biol. 12, 2336–2351 (2006)

    Article  ADS  Google Scholar 

  32. 32

    Knoblauch, C., Beer, C., Sosnin, A., Wagner, D. & Pfeiffer, E.-M. Predicting long-term carbon mineralization and trace gas production from thawing permafrost of Northeast Siberia. Glob. Change Biol. 19, 1160–1172 (2013)

    Article  ADS  Google Scholar 

  33. 33

    Elberling, B. et al. Long-term CO2 production following permafrost thaw. Nature Clim. Change 3, 890–894 (2013)

    Article  ADS  CAS  Google Scholar 

  34. 34

    Kirschbaum, M. U. F. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48, 21–51 (2000)

    Article  CAS  Google Scholar 

  35. 35

    Kätterer, T., Reichstein, M., Andren, O. & Lomander, A. Temperature dependence of organic matter decomposition: a critical review using literature data analyzed with different models. Biol. Fertil. Soils 27, 258–262 (1998)

    Article  Google Scholar 

  36. 36

    Schädel, C. et al. Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–652 (2014)Synthesizes the decomposability of permafrost organic matter using incubation data and calculates potential carbon loss for high-latitude soils.

    Article  ADS  Google Scholar 

  37. 37

    Treat, C. et al. A pan-Arctic synthesis of CH4 and CO2 production from anoxic soil incubations. Glob. Change Biol. doi:10.1111/gcb.12875. (in the press)

    Article  ADS  PubMed  Google Scholar 

  38. 38

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. Contributions of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 659–740 (Cambridge Univ. Press, 2013)

  39. 39

    Verville, J. H., Hobbie, S. E., Iii, F. S. C. & Hooper, D. U. Response of tundra CH4 and CO2 flux to manipulation of temperature and vegetation. Biogeochemistry 41, 215–235 (1998)

    Article  CAS  Google Scholar 

  40. 40

    Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013)Synthesis of data on growing-season CH 4 emissions from terrestrial ecosystems across permafrost zones.

    Article  ADS  Google Scholar 

  41. 41

    Treat, C. C. et al. Temperature and peat type control CO2 and CH4 production in Alaskan permafrost peats. Glob. Change Biol. 20, 2674–2686 (2014)

    Article  ADS  CAS  Google Scholar 

  42. 42

    Ström, L., Tagesson, T., Mastepanov, M. & Christensen, T. R. Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland. Soil Biol. Biochem. 45, 61–70 (2012)

    Article  CAS  Google Scholar 

  43. 43

    Lawrence, D. M., Slater, A. G., Romanovsky, V. E. & Nicolsky, D. J. Sensitivity of a model projection of near-surface permafrost degradation to soil column depth and representation of soil organic matter. J. Geophys. Res. Earth Surf. 113, F02011 (2008)

    ADS  Google Scholar 

  44. 44

    Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth system models. J. Clim. 26, 1877–1900 (2013)Analysis of Earth system models projections of permafrost change in response to climate change scenarios.

    Article  ADS  Google Scholar 

  45. 45

    Koven, C. D. et al. Permafrost carbon-climate feedbacks accelerate global warming. Proc. Natl Acad. Sci. USA 108, 14769–14774 (2011)

    Article  ADS  PubMed  Google Scholar 

  46. 46

    Schaefer, K., Zhang, T., Bruhwiler, L. & Barrett, A. P. Amount and timing of permafrost carbon release in response to climate warming. Tellus B 63, 165–180 (2011)

    Article  ADS  CAS  Google Scholar 

  47. 47

    Schneider von Deimling, T. et al. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 9, 649–665 (2012)

    Article  ADS  CAS  Google Scholar 

  48. 48

    MacDougall, A. H., Avis, C. A. & Weaver, A. J. Significant contribution to climate warming from the permafrost carbon feedback. Nature Geosci. 5, 719–721 (2012)

    Article  ADS  CAS  Google Scholar 

  49. 49

    Burke, E. J., Jones, C. D. & Koven, C. D. Estimating the permafrost-carbon climate response in the CMIP5 climate models using a simplified approach. J. Clim. 26, 4897–4909 (2013)

    Article  ADS  Google Scholar 

  50. 50

    Schaphoff, S. et al. Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026 (2013)

    Article  ADS  CAS  Google Scholar 

  51. 51

    Burke, E. J., Hartley, I. P. & Jones, C. D. Uncertainties in the global temperature change caused by carbon release from permafrost thawing. Cryosphere 6, 1063–1076 (2012)

    Article  ADS  Google Scholar 

  52. 52

    Zhuang, Q. et al. CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys. Res. Lett. 33, L17403 (2006)

    Article  ADS  CAS  Google Scholar 

  53. 53

    Schuur, E. A. G. & Abbott, B. &. the Permafrost Carbon Network. Climate change: high risk of permafrost thaw. Nature 480, 32–33 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  54. 54

    Schuur, E. A. G. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Clim. Change 119, 359–374 (2013)State of knowledge on changes in permafrost distribution and soil organic carbon stocks in response to climate warming based on expert survey.

    Article  ADS  CAS  Google Scholar 

  55. 55

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014)

    Article  ADS  CAS  Google Scholar 

  56. 56

    Lawrence, D. M., Slater, A. G. & Swenson, S. C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Clim. 25, 2207–2225 (2012)

    Article  ADS  Google Scholar 

  57. 57

    Slater, A. G. & Lawrence, D. M. Diagnosing present and future permafrost from climate models. J. Clim. 26, 5608–5623 (2013)

    Article  ADS  Google Scholar 

  58. 58

    Shaver, G. R. et al. Global warming and terrestrial ecosystems: a conceptual framework for analysis. Bioscience 50, 871–882 (2000)

    Article  Google Scholar 

  59. 59

    Sistla, S. A. et al. Long-term warming restructures Arctic tundra without changing net soil carbon storage. Nature 497, 615–618 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  60. 60

    Qian, H., Joseph, R. & Zeng, N. Enhanced terrestrial carbon uptake in the northern high latitudes in the 21st century from the Coupled Carbon Cycle Climate Model Intercomparison Project model projections. Glob. Change Biol. 16, 641–656 (2010)

    Article  ADS  Google Scholar 

  61. 61

    Krieger, K. E. The topographic form and evolution of thermal erosion features: A first analysis using airborne and ground-based LiDAR in Arctic Alaska. MSc thesis, Idaho State Univ. (2012)

  62. 62

    Jorgenson, M. T., Shur, Y. L. & Pullman, E. R. Abrupt increase in permafrost degradation in Arctic Alaska. Geophys. Res. Lett. 33, L02503 (2006)

    Article  ADS  Google Scholar 

  63. 63

    Christensen, T. R. et al. Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004)

    Article  ADS  CAS  Google Scholar 

  64. 64

    Johansson, T. et al. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Glob. Change Biol. 12, 2352–2369 (2006)

    Article  ADS  Google Scholar 

  65. 65

    Osterkamp, T. E. Characteristics of the recent warming of permafrost in Alaska. J. Geophys. Res. Earth Surf. 112, F02S02 (2007)

    Article  ADS  Google Scholar 

  66. 66

    Baltzer, J. L., Veness, T., Chasmer, L. E., Sniderhan, A. E. & Quinton, W. L. Forests on thawing permafrost: fragmentation, edge effects, and net forest loss. Glob. Change Biol. 20, 824–834 (2014)

    Article  ADS  Google Scholar 

  67. 67

    Raynolds, M. K. et al. Cumulative geoecological effects of 62 years of infrastructure and climate change in ice-rich permafrost landscapes, Prudhoe Bay Oilfield, Alaska. Glob. Change Biol. 20, 1211–1224 (2014)

    Article  ADS  Google Scholar 

  68. 68

    Jones, B. M. et al. Modern thermokarst lake dynamics in the continuous permafrost zone, northern Seward Peninsula, Alaska. J. Geophys. Res. Biogeosci. 116, G00M03 (2011)

    Google Scholar 

  69. 69

    Smith, L. C., Sheng, Y., MacDonald, G. M. & Hinzman, L. D. Disappearing Arctic lakes. Science 308, 1429 (2005)

    Article  CAS  PubMed  Google Scholar 

  70. 70

    Riordan, B., Verbyla, D. & McGuire, A. D. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. J. Geophys. Res. Biogeosci. 111, G04002 (2006)

    Article  ADS  Google Scholar 

  71. 71

    Roach, J., Griffith, B., Verbyla, D. & Jones, J. Mechanisms influencing changes in lake area in Alaskan boreal forest. Glob. Change Biol. 17, 2567–2583 (2011)

    Article  ADS  Google Scholar 

  72. 72

    Sannel, A. B. K. & Kuhry, P. Warming-induced destabilization of peat plateau/thermokarst lake complexes. J. Geophys. Res. Biogeosci. 116, G03035 (2011)

    Article  ADS  Google Scholar 

  73. 73

    Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S., III Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71–75 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  74. 74

    Jones, M. C., Grosse, G., Jones, B. M. & Walter Anthony, K. Peat accumulation in drained thermokarst lake basins in continuous, ice-rich permafrost, northern Seward Peninsula, Alaska. J. Geophys. Res. 117, G00M07 (2012)

    ADS  Google Scholar 

  75. 75

    Zona, D. et al. Increased CO2 loss from vegetated drained lake tundra ecosystems due to flooding. Glob. Biogeochem. Cycles 26, GB2004 (2012)

    Article  ADS  CAS  Google Scholar 

  76. 76

    Olefeldt, D. & Roulet, N. T. Permafrost conditions in peatlands regulate magnitude, timing, and chemical composition of catchment dissolved organic carbon export. Glob. Change Biol. 20, 3122–3136 (2014)

    Article  ADS  Google Scholar 

  77. 77

    Feng, X. et al. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proc. Natl Acad. Sci. USA 110, 14168–14173 (2013)

    Article  ADS  Google Scholar 

  78. 78

    Vonk, J. E. & Gustafsson, O. Permafrost-carbon complexities. Nature Geosci. 6, 675–676 (2013)

    Article  ADS  CAS  Google Scholar 

  79. 79

    Vonk, J. E. et al. High biolability of ancient permafrost carbon upon thaw. Geophys. Res. Lett. 40, 2689–2693 (2013)

    Article  ADS  CAS  Google Scholar 

  80. 80

    Cory, R. M., Crump, B. C., Dobkowski, J. A. & Kling, G. W. Surface exposure to sunlight stimulates CO2 release from permafrost soil carbon in the Arctic. Proc. Natl Acad. Sci. USA 110, 3429–3434 (2013)

    Article  ADS  PubMed  Google Scholar 

  81. 81

    Vonk, J. E. et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia. Nature 489, 137–140 (2012)

    Article  ADS  CAS  PubMed  Google Scholar 

  82. 82

    Shakhova, N. et al. Geochemical and geophysical evidence of methane release over the East Siberian Arctic Shelf. J. Geophys. Res. Oceans 115, C08007 (2010)

    Article  ADS  CAS  Google Scholar 

  83. 83

    Shakhova, N. et al. Ebullition and storm-induced methane release from the East Siberian Arctic Shelf. Nature Geosci. 7, 64–70 (2014)Quantitative assessment of bubble-induced CH 4 emissions resulting from subsea permafrost degradation in the coastal area.

    Article  ADS  CAS  Google Scholar 

  84. 84

    Dmitrenko, I. A. et al. Recent changes in shelf hydrography in the Siberian Arctic: Potential for subsea permafrost instability. J. Geophys. Res. Oceans 116, C10027 (2011)

    Article  ADS  Google Scholar 

  85. 85

    Parmentier, F.-J. W. et al. The impact of lower sea-ice extent on Arctic greenhouse-gas exchange. Nature Clim. Change 3, 195–202 (2013)

    Article  ADS  CAS  Google Scholar 

  86. 86

    Notz, D., Brovkin, V. & Heimann, M. Arctic: uncertainties in methane link. Nature 500, 529–529 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  87. 87

    Parmentier, F.-J. W. & Christensen, T. R. Arctic: speed of methane release. Nature 500, 529–529 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  88. 88

    Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014)

    Article  ADS  Google Scholar 

  89. 89

    Avis, C. A., Weaver, A. J. & Meissner, K. J. Reduction in areal extent of high-latitude wetlands in response to permafrost thaw. Nature Geosci. 4, 444–448 (2011)

    Article  ADS  CAS  Google Scholar 

  90. 90

    Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013)

    Article  ADS  Google Scholar 

  91. 91

    McGuire, A. D. et al. An assessment of the carbon balance of Arctic tundra: comparisons among observations, process models, and atmospheric inversions. Biogeosciences 9, 3185–3204 (2012)

    Article  ADS  CAS  Google Scholar 

  92. 92

    Belshe, E. F., Schuur, E. A. G. & Bolker, B. M. Tundra ecosystems observed to be CO2 sources due to differential amplification of the carbon cycle. Ecol. Lett. 16, 1307–1315 (2013)

    Article  CAS  PubMed  Google Scholar 

  93. 93

    Ueyama, M. et al. Upscaling terrestrial carbon dioxide fluxes in Alaska with satellite remote sensing and support vector regression. J. Geophys. Res. Biogeosci. 118, 1266–1281 (2013)

    Article  CAS  Google Scholar 

  94. 94

    National Research Council. Opportunities to Use Remote Sensing in Understanding Permafrost and Related Ecological Characteristics: Report of a Workshop (The National Academies Press, 2014)

  95. 95

    Schaefer, K., Lantuit, H., Romanovsky, V. E. & Schuur, E. A. G. Policy Implications of Warming Permafrost (United Nations Environment Program, 2012)

    Google Scholar 

  96. 96

    Brown, J., Ferrians, O. J. J., Heginbottom, J. A. & Melnikov, E. S. Circum-Arctic Map of Permafrost and Ground-Ice Conditions. Version 2, (National Snow and Ice Data Center, 2002)

    Google Scholar 

  97. 97

    IPCC in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (eds Solomon, S. D. et al.) (Cambridge Univ. Press, 2007)

Download references


Initial funding was provided by the National Science Foundation Vulnerability of Permafrost Carbon Research Coordination Network Grant number 955713, with continued support from the National Science Foundation Research, Synthesis, and Knowledge Transfer in a Changing Arctic: Science Support for the Study of Environmental Arctic Change Grant number 1331083. Author contributions were also supported by grants to individuals: Department of Energy Office of Science, Office of Biological and Environmental Sciences Division Terrestrial Ecosystem Sciences program (DE-SC0006982) to E.A.G.S.; National Science Foundation Long Term Ecological Research Program (1026415) to A.D.M.; Department of Energy (DE-AC02-05CH11231, NGEE Arctic, BGC-Feedbacks SFA) to C.D.K.; Regional and Global Climate Modeling Program (RGCM) of the US Department of Energy’s Office of Science (BER) Cooperative Agreement (DE-FC02-97ER62402) to D.M.L.; European Research Commission (338335) to G.G.; The Netherlands Organization for Scientific Research (863.12.004) to J.E.V.; National Science Foundation Polar Programs (1312402) to S.M.N.; National Science Foundation Polar Programs (856864 and 1304271) to V.E.R.; National Oceanic and Atmospheric Administration (NA09OAR4310063) and National Aeronautics and Space Agency (NNX10AR63G) to K.S.; Nordforsk (DEFROST; 23001), EU FP7 (PAGE21; 282700) and FORMAS (Bolin Climate Research Centre; 214-2006-1749) to G.H. and P.K.; Department of Energy Biological and Environmental Research (3ERKP818) to D.J.H.; National Science Foundation, Division of Environmental Biology (724514, 830997) to M.R.T. and A.D.M.; U.S. Geological Survey Climate and Land Use Program to J.W.H. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information




This manuscript arose from the collective effort of the Permafrost Carbon Network (; all authors are working group leaders within the network. E.A.G.S. and A.D.M. wrote the initial draft, with additional contributions from all authors. C.S. provided assistance with final editing and submission of the manuscript, and helped to organise the Permafrost Carbon Network activities that made this possible. Figure 1 was prepared by G.H., Fig. 2 by C.S., Fig. 3 by K.S., Fig. 4 by G.G. and the Box 1 Figure by E.A.G.S.

Corresponding author

Correspondence to E. A. G. Schuur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schuur, E., McGuire, A., Schädel, C. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing