Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global effects of land use on local terrestrial biodiversity

Abstract

Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear—a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Locations of sites and responses of four metrics of local diversity to human pressures.
Figure 2: Similarity in assemblage composition as a function of land use.
Figure 3: Net change in local richness caused by land use and related pressures by 2000.
Figure 4: Projected net change in local richness from 1500 to 2095.
Figure 5: Biodiversity projections at the country level.

References

  1. 1

    Tittensor, D. P. et al. A mid-term analysis of progress toward international biodiversity targets. Science 346, 241–244 (2014).

    ADS  CAS  PubMed  Google Scholar 

  2. 2

    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).

    CAS  PubMed  Google Scholar 

  3. 3

    Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).

    PubMed  Google Scholar 

  4. 4

    Hooper, D. U. et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature 486, 105–108 (2012).

    ADS  CAS  PubMed  Google Scholar 

  5. 5

    Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    ADS  CAS  Google Scholar 

  7. 7

    Vellend, M. et al. Global meta-analysis reveals no net change in local-scale plant biodiversity over time. Proc. Natl Acad. Sci. USA 110, 19456–19459 (2013).

    ADS  CAS  PubMed  Google Scholar 

  8. 8

    Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Cardinale, B. Overlooked local biodiversity loss. Science 344, 1098 (2014).

    ADS  CAS  PubMed  Google Scholar 

  10. 10

    Alkemade, R. et al. GLOBIO3: a framework to investigate options for reducing global terrestrial biodiversity loss. Ecosystems 12, 374–390 (2009).

    Google Scholar 

  11. 11

    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).

    ADS  CAS  PubMed  Google Scholar 

  14. 14

    Weber, E. & Li, B. Plant invasions in China: what is to be expected in the wake of economic development?. Bioscience 58, 437–444 (2008).

    Google Scholar 

  15. 15

    Clements, G. R. et al. Where and how are roads endangering mammals in Southeast Asia’s forests?. PLoS ONE 9, e115376 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735 (2014).

    PubMed  PubMed Central  Google Scholar 

  17. 17

    Chapman, A. D. Numbers of Living Species in Australia and the World. (Australian Biological Resources Study, 2009).

  18. 18

    Phalan, B., Onial, M., Balmford, A. & Green, R. E. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    ADS  CAS  Google Scholar 

  19. 19

    Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).

    CAS  PubMed  Google Scholar 

  20. 20

    Newbold, T. et al. A global model of the response of tropical and sub-tropical forest biodiversity to anthropogenic pressures. Proc. R. Soc. B 281, 20141371 (2014).

    PubMed  Google Scholar 

  21. 21

    Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).

    Google Scholar 

  22. 22

    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).

    PubMed  Google Scholar 

  23. 23

    Magurran, A. E. Measuring Biological Diversity. (Wiley-Blackwell, 2004).

  24. 24

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    ADS  CAS  PubMed  Google Scholar 

  25. 25

    Dent, D. H. & Wright, S. J. The future of tropical species in secondary forests: A quantitative review. Biol. Conserv. 142, 2833–2843 (2009).

    Google Scholar 

  26. 26

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    ADS  Google Scholar 

  27. 27

    Díaz, S. et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 3, 2958–2975 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. 28

    Cardillo, M. et al. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).

    ADS  CAS  PubMed  Google Scholar 

  29. 29

    Mayfield, M. M. et al. Differences in forest plant functional trait distributions across land-use and productivity gradients. Am. J. Bot. 100, 1356–1368 (2013).

    PubMed  Google Scholar 

  30. 30

    Séguin, A., Harvey, É., Archambault, P., Nozais, C. & Gravel, D. Body size as a predictor of species loss effect on ecosystem functioning. Sci. Rep. 4, 4616 (2014).

    ADS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337, 228–232 (2012).

    ADS  CAS  PubMed  Google Scholar 

  32. 32

    Harfoot, M. et al. Integrated assessment models for ecologists: the present and the future. Glob. Ecol. Biogeogr. 23, 124–143 (2014).

    Google Scholar 

  33. 33

    Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Phil. Trans. R. Soc. A 369, 1010–1035 (2011).

    ADS  PubMed  Google Scholar 

  34. 34

    Mora, C. et al. The projected timing of climate departure from recent variability. Nature 502, 183–187 (2013).

    ADS  CAS  PubMed  Google Scholar 

  35. 35

    Burrows, M. T. et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature 507, 492–495 (2014).

    ADS  CAS  PubMed  Google Scholar 

  36. 36

    Oldfield, F. & Steffen, W. Anthropogenic climate change and the nature of Earth System science. Anthr. Rev. 1, 70–75 (2014).

    Google Scholar 

  37. 37

    Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010).

    ADS  CAS  PubMed  Google Scholar 

  38. 38

    Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Clim. Chang. 3, 678–682 (2013).

    ADS  Google Scholar 

  39. 39

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis. (World Resources Institute, 2005).

  40. 40

    van Vuuren, D. P. et al. RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Clim. Change 109, 95–116 (2011).

    ADS  Google Scholar 

  41. 41

    Thomson, A. M. et al. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011).

    ADS  CAS  Google Scholar 

  42. 42

    Riahi, K. et al. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 109, 33–57 (2011).

    ADS  CAS  Google Scholar 

  43. 43

    Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nature Clim. Chang. 2, 248–253 (2012).

    ADS  Google Scholar 

  44. 44

    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. http://cran.r-project.org/web/packages/lme4/ (2013).

  45. 45

    Center for International Earth Science Information Network (CIESIN) Columbia University, International Food Policy Research Institute (IFPRI), The World Bank & Centro Internacional de Agricultura Tropical (CIAT). Global rural-urban mapping project, version 1 (GRUMPv1): population density grid. (NASA Socioeconomic Data and Applications Center (SEDAC), 2011). http://dx.doi.org/10.7927/H4R20Z93 (Accessed 11 July 2012).

  46. 46

    Center for International Earth Science Information Network (CIESIN) Columbia University & Information Technology Outreach Services (ITOS) University of Georgia. Global roads open access data set, version 1 (gROADSv1). (NASA Socioeconomic Data and Applications Center (SEDAC), 2013). http://dx.doi.org/10.7927/H4VD6WCT (Accessed 18 December 2013).

  47. 47

    Nelson, A. Estimated travel time to the nearest city of 50,000 or more people in year 2000. http://bioval.jrc.ec.europa.eu/products/gam/index.htm (2008). (Accessed 14 July 2014).

  48. 48

    Aben, J., Dorenbosch, M., Herzog, S. K., Smolders, A. J. P. & Van Der Velde, G. Human disturbance affects a deciduous forest bird community in the Andean foothills of central Bolivia. Bird Conserv. Int. 18, 363–380 (2008).

    Google Scholar 

  49. 49

    Adum, G. B., Eichhorn, M. P., Oduro, W., Ofori-Boateng, C. & Rodel, M. O. Two-stage recovery of amphibian assemblages following selective logging of tropical forests. Conserv. Biol. 27, 354–363 (2013).

    PubMed  Google Scholar 

  50. 50

    Aguilar Barquero, V. & Jiménez Hernández, F. Diversidad y distribución de palmas (Arecaceae) en tres fragmentos de bosque muy húmedo en Costa Rica. Rev. Biol. Trop. 57, 83–92 (2009).

    Google Scholar 

  51. 51

    Alberta Biodiversity Monitoring Institute (ABMI) . The raw soil arthropods dataset and the raw trees & snags dataset from Prototype Phase (2003-2006) and Rotation 1 (2007-2012). (2013).

  52. 52

    Alcala, E. L., Alcala, A. C. & Dolino, C. N. Amphibians and reptiles in tropical rainforest fragments on Negros Island, the Philippines. Environ. Conserv. 31, 254–261 (2004).

    Google Scholar 

  53. 53

    Alcayaga, O. E., Pizarro-Araya, J., Alfaro, F. M. & Cepeda-Pizarro, J. Spiders (Arachnida, Araneae) associated to agroecosystems in the Elqui Valley (Coquimbo Region, Chile). Revista Colombiana De Entomologia 39, 150–154 (2013).

    Google Scholar 

  54. 54

    Ancrenaz, M., Goossens, B., Gimenez, O., Sawang, A. & Lackman-Ancrenaz, I. Determination of ape distribution and population size using ground and aerial surveys: a case study with orang-utans in lower Kinabatangan, Sabah, Malaysia. Anim. Conserv. 7, 375–385 (2004).

    Google Scholar 

  55. 55

    Arbeláez-Cortés, E., Rodríguez-Correa, H. A. & Restrepo-Chica, M. Mixed bird flocks: patterns of activity and species composition in a region of the Central Andes of Colombia. Revista Mexicana De Biodiversidad 82, 639–651 (2011).

    Google Scholar 

  56. 56

    Armbrecht, I., Perfecto, I. & Silverman, E. Limitation of nesting resources for ants in Colombian forests and coffee plantations. Ecol. Entomol. 31, 403–410 (2006).

    Google Scholar 

  57. 57

    Arroyo, J., Iturrondobeitia, J. C., Rad, C. & Gonzalez-Carcedo, S. Oribatid mite (Acari) community structure in steppic habitats of Burgos Province, central northern Spain. J. Nat. Hist. 39, 3453–3470 (2005).

    Google Scholar 

  58. 58

    Azhar, B. et al. The influence of agricultural system, stand structural complexity and landscape context on foraging birds in oil palm landscapes. Ibis 155, 297–312 (2013).

    Google Scholar 

  59. 59

    Azpiroz, A. B. & Blake, J. G. Avian assemblages in altered and natural grasslands in the northern Campos of Uruguay. Condor 111, 21–35 (2009).

    Google Scholar 

  60. 60

    Baeten, L. et al. Early trajectories of spontaneous vegetation recovery after intensive agricultural land use. Restor. Ecol. 18, 379–386 (2010).

    Google Scholar 

  61. 61

    Baeten, L., Hermy, M., Van Daele, S. & Verheyen, K. Unexpected understorey community development after 30 years in ancient and post-agricultural forests. J. Ecol. 98, 1447–1453 (2010).

    Google Scholar 

  62. 62

    Báldi, A., Batáry, P. & Erdo˝s, S. Effects of grazing intensity on bird assemblages and populations of Hungarian grasslands. Agric. Ecosyst. Environ. 108, 251–263 (2005).

    Google Scholar 

  63. 63

    Banks, J. E., Sandvik, P. & Keesecker, L. Beetle (Coleoptera) and spider (Araneae) diversity in a mosaic of farmland, edge, and tropical forest habitats in western Costa Rica. Pan-Pac. Entomol. 83, 152–160 (2007).

    Google Scholar 

  64. 64

    Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    ADS  CAS  PubMed  Google Scholar 

  65. 65

    Bartolommei, P., Mortelliti, A., Pezzo, F. & Puglisi, L. Distribution of nocturnal birds (Strigiformes and Caprimulgidae) in relation to land-use types, extent and configuration in agricultural landscapes of Central Italy. Rendiconti Lincei-Scienze Fisiche E Naturali 24, 13–21 (2013).

    Google Scholar 

  66. 66

    Basset, Y. et al. Changes in Arthropod assemblages along a wide gradient of disturbance in Gabon. Conserv. Biol. 22, 1552–1563 (2008).

    PubMed  Google Scholar 

  67. 67

    Bates, A. J. et al. Changing bee and hoverfly pollinator assemblages along an urban-rural gradient. PLoS ONE 6, (2011).

  68. 68

    Baur, B. et al. Effects of abandonment of subalpine hay meadows on plant and invertebrate diversity in Transylvania, Romania. Biol. Conserv. 132, 261–273 (2006).

    Google Scholar 

  69. 69

    Berg, A., Ahrne, K., Ockinger, E., Svensson, R. & Soderstrom, B. Butterfly distribution and abundance is affected by variation in the Swedish forest-farmland landscape. Biol. Conserv. 144, 2819–2831 (2011).

    Google Scholar 

  70. 70

    Bernard, H., Fjeldsa, J. & Mohamed, M. A case study on the effects of disturbance and conversion of tropical lowland rain forest on the non-volant small mammals in north Borneo: management implications. Mammal Study 34, 85–96 (2009).

    Google Scholar 

  71. 71

    Berry, N. J. et al. The high value of logged tropical forests: lessons from northern Borneo. Biodivers. Conserv. 19, 985–997 (2010).

    Google Scholar 

  72. 72

    Bicknell, J. & Peres, C. A. Vertebrate population responses to reduced-impact logging in a neotropical forest. For. Ecol. Manage. 259, 2267–2275 (2010).

    Google Scholar 

  73. 73

    Bihn, J. H., Verhaagh, M., Braendle, M. & Brandl, R. Do secondary forests act as refuges for old growth forest animals? Recovery of ant diversity in the Atlantic forest of Brazil. Biol. Conserv. 141, 733–743 (2008).

    Google Scholar 

  74. 74

    Billeter, R. et al. Indicators for biodiversity in agricultural landscapes: a pan-European study. J. Appl. Ecol. 45, 141–150 (2008).

    Google Scholar 

  75. 75

    Bóçon, R. Riqueza e abundância de aves em três estágios sucessionais da floresta ombrófila densa submontana, Antonina, Paraná. PhD thesis, Universidade Federal do Paraná. (2010).

  76. 76

    Borges, S. H. Bird assemblages in secondary forests developing after slash-and-burn agriculture in the Brazilian Amazon. J. Trop. Ecol. 23, 469–477 (2007).

    Google Scholar 

  77. 77

    Boutin, C., Baril, A. & Martin, P. A. Plant diversity in crop fields and woody hedgerows of organic and conventional farms in contrasting landscapes. Agric. Ecosyst. Environ. 123, 185–193 (2008).

    Google Scholar 

  78. 78

    Bouyer, J. et al. Identification of ecological indicators for monitoring ecosystem health in the trans-boundary W Regional park: a pilot study. Biol. Conserv. 138, 73–88 (2007).

    Google Scholar 

  79. 79

    Bragagnolo, C., Nogueira, A. A., Pinto-da-Rocha, R. & Pardini, R. Harvestmen in an Atlantic forest fragmented landscape: evaluating assemblage response to habitat quality and quantity. Biol. Conserv. 139, 389–400 (2007).

    Google Scholar 

  80. 80

    Brearley, F. Q. Below-ground secondary succession in tropical forests of Borneo. J. Trop. Ecol. 27, 413–420 (2011).

    Google Scholar 

  81. 81

    Brito, I., Goss, M. J., de Carvalho, M., Chatagnier, O. & van Tuinen, D. Impact of tillage system on arbuscular mycorrhiza fungal communities in the soil under Mediterranean conditions. Soil Tillage Res. 121, 63–67 (2012).

    Google Scholar 

  82. 82

    Brunet, J. et al. Understory succession in post-agricultural oak forests: habitat fragmentation affects forest specialists and generalists differently. For. Ecol. Manage. 262, 1863–1871 (2011).

    Google Scholar 

  83. 83

    Buczkowski, G. Extreme life history plasticity and the evolution of invasive characteristics in a native ant. Biol. Invasions 12, 3343–3349 (2010).

    Google Scholar 

  84. 84

    Buczkowski, G. & Richmond, D. S. The effect of urbanization on ant abundance and diversity: a temporal examination of factors affecting biodiversity. PLoS ONE 7, (2012).

  85. 85

    Buddle, C. M. & Shorthouse, D. P. Effects of experimental harvesting on spider (Araneae) assemblages in boreal deciduous forests. Can. Entomol. 140, 437–452 (2008).

    Google Scholar 

  86. 86

    Buscardo, E. et al. The early effects of afforestation on biodiversity of grasslands in Ireland. Biodivers. Conserv. 17, 1057–1072 (2008).

    Google Scholar 

  87. 87

    Cabra-García, J., Bermúdez-Rivas, C., Osorio, A. M. & Chacón, P. Cross-taxon congruence of alpha and beta diversity among five leaf litter arthropod groups in Colombia. Biodivers. Conserv. 21, 1493–1508 (2012).

    Google Scholar 

  88. 88

    Cáceres, N. C., Napoli, R. P., Casella, J. & Hannibal, W. Mammals in a fragmented savannah landscape in south-western Brazil. J. Nat. Hist. 44, 491–512 (2010).

    Google Scholar 

  89. 89

    Cagle, N. L. Snake species distributions and temperate grasslands: a case study from the American tallgrass prairie. Biol. Conserv. 141, 744–755 (2008).

    Google Scholar 

  90. 90

    Calviño-Cancela, M., Rubido-Bará, M. & van Etten, E. J. B. Do eucalypt plantations provide habitat for native forest biodiversity?. For. Ecol. Manage. 270, 153–162 (2012).

    Google Scholar 

  91. 91

    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011).

    ADS  CAS  PubMed  Google Scholar 

  92. 92

    Carrijo, T. F., Brandao, D., de Oliveira, D. E., Costa, D. A. & Santos, T. Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). J. Insect Conserv. 13, 575–581 (2009).

    Google Scholar 

  93. 93

    Carvalho, A. L. d., Ferreira, E. J. L., Lima, J. M. T. & de Carvalho, A. L. Floristic and structural comparisons among palm communities in primary and secondary forest fragments of the Raimundo Irineu Serra Environmental Protection Area - Rio Branco, Acre, Brazil. Acta Amazon. 40, 657–666 (2010).

    Google Scholar 

  94. 94

    Castro, H., Lehsten, V., Lavorel, S. & Freitas, H. Functional response traits in relation to land use change in the Montado. Agric. Ecosyst. Environ. 137, 183–191 (2010).

    Google Scholar 

  95. 95

    Castro-Luna, A. A., Sosa, V. J. & Castillo-Campos, G. Bat diversity and abundance associated with the degree of secondary succession in a tropical forest mosaic in south-eastern Mexico. Anim. Conserv. 10, 219–228 (2007).

    Google Scholar 

  96. 96

    Center For International Forestry Research (CIFOR). Multidisciplinary Landscape Assessment — Cameroon. http://www.cifor.org/mla (2013).

  97. 97

    Center For International Forestry Research (CIFOR). Multidisciplinary Landscape Assessment — Philippines. http://www.cifor.org/mla (2013).

  98. 98

    Centro Agronómico Tropical de Investigación y Enseñanza(CATIE) Unpublished data of reptilian and amphibian diversity in six countries in Central America (Centro Agronómico Tropical de Investigación y Enseñanza (CATIE) (2010).

  99. 99

    Cerezo, A., Conde, M. & Poggio, S. Pasture area and landscape heterogeneity are key determinants of bird diversity in intensively managed farmland. Biodivers. Conserv. 20, 2649–2667 (2011).

    Google Scholar 

  100. 100

    Chapman, K. & Reich, P. Land use and habitat gradients determine bird community diversity and abundance in suburban, rural and reserve landscapes of Minnesota, USA. Biol. Conserv. 135, 527–541 (2007).

    Google Scholar 

  101. 101

    Chauvat, M., Wolters, V. & Dauber, J. Response of collembolan communities to land-use change and grassland succession. Ecography 30, 183–192 (2007).

    Google Scholar 

  102. 102

    Clarke, F. M., Rostant, L. V. & Racey, P. A. Life after logging: post-logging recovery of a neotropical bat community. J. Appl. Ecol. 42, 409–420 (2005).

    Google Scholar 

  103. 103

    Cleary, D. F. R. et al. Diversity and community composition of butterflies and odonates in an ENSO-induced fire affected habitat mosaic: a case study from East Kalimantan, Indonesia. Oikos 105, 426–448 (2004).

    Google Scholar 

  104. 104

    Cleary, D. F. R. & Mooers, A. O. Burning and logging differentially affect endemic vs. widely distributed butterfly species in Borneo. Divers. Distrib. 12, 409–416 (2006).

    Google Scholar 

  105. 105

    Cockle, K. L., Leonard, M. L. & Bodrati, A. A. Presence and abundance of birds in an Atlantic forest reserve and adjacent plantation of shade-grown yerba mate, in Paraguay. Biodivers. Conserv. 14, 3265–3288 (2005).

    Google Scholar 

  106. 106

    Connop, S., Hill, T., Steer, J. & Shaw, P. Microsatellite analysis reveals the spatial dynamics of Bombus humilis and Bombus sylvarum. Insect Conserv. Divers. 4, 212–221 (2011).

    Google Scholar 

  107. 107

    D’Aniello, B., Stanislao, I., Bonelli, S. & Balletto, E. Haying and grazing effects on the butterfly communities of two Mediterranean-area grasslands. Biodivers. Conserv. 20, 1731–1744 (2011).

    Google Scholar 

  108. 108

    Darvill, B., Knight, M. E. & Goulson, D. Use of genetic markers to quantify bumblebee foraging range and nest density. Oikos 107, 471–478 (2004).

    Google Scholar 

  109. 109

    Davis, A. L. V. & Philips, T. K. Effect of deforestation on a southwest Ghana dung beetle assemblage (Coleoptera: Scarabaeidae) at the periphery of Ankasa conservation area. Environ. Entomol. 34, 1081–1088 (2005).

    Google Scholar 

  110. 110

    Davis, E. S., Murray, T. E., Fitzpatrick, U., Brown, M. J. F. & Paxton, R. J. Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol. Ecol. 19, 4922–4935 (2010).

    PubMed  Google Scholar 

  111. 111

    Dawson, J. et al. Bird communities of the lower Waria Valley, Morobe Province, Papua New Guinea: a comparison between habitat types. Trop. Conserv. Sci. 4, 317–348 (2011).

    ADS  Google Scholar 

  112. 112

    Delabie, J. H. C. et al. Ants as biological indicators of Wayana Amerindian land use in French Guiana. C. R. Biol. 332, 673–684 (2009).

    PubMed  Google Scholar 

  113. 113

    Diekötter, T., Walther-Hellwig, K., Conradi, M., Suter, M. & Frankl, R. Effects of landscape elements on the distribution of the rare bumblebee species Bombus muscorum in an agricultural landscape. Biodivers. Conserv. 15, 57–68 (2006).

    Google Scholar 

  114. 114

    Domínguez, E., Bahamonde, N. & Muñoz-Escobar, C. Efectos de la extracción de turba sobre la composición y estructura de una turbera de Sphagnum explotada y abandonada hace 20 años, Chile. Anales Instituto Patagonia (Chile) 40, 37–45 (2012).

    Google Scholar 

  115. 115

    Dominguez-Haydar, Y. & Armbrecht, I. Response of ants and their seed removal in rehabilitation areas and forests at El Cerrejon coal mine in Colombia. Restor. Ecol. 19, 178–184 (2011).

    Google Scholar 

  116. 116

    Dumont, B. et al. How does grazing intensity influence the diversity of plants and insects in a species-rich upland grassland on basalt soils?. Grass Forage Sci. 64, 92–105 (2009).

    Google Scholar 

  117. 117

    Dures, S. G. & Cumming, G. S. The confounding influence of homogenising invasive species in a globally endangered and largely urban biome: Does habitat quality dominate avian biodiversity?. Biol. Conserv. 143, 768–777 (2010).

    Google Scholar 

  118. 118

    Edenius, L., Mikusinski, G. & Bergh, J. Can repeated fertilizer applications to young Norway spruce enhance avian diversity in intensively managed forests?. Ambio 40, 521–527 (2011).

    PubMed  PubMed Central  Google Scholar 

  119. 119

    Elek, Z. & Lovei, G. L. Patterns in ground beetle (Coleoptera: Carabidae) assemblages along an urbanisation gradient in Denmark. Acta Oecologica 32, 104–111 (2007).

    ADS  Google Scholar 

  120. 120

    Endo, W. et al. Game vertebrate densities in hunted and nonhunted forest sites in Manu National Park, Peru. Biotropica 42, 251–261 (2010).

    Google Scholar 

  121. 121

    Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol. 27, 615–624 (2013).

    PubMed  Google Scholar 

  122. 122

    Farwig, N., Sajita, N. & Boehning-Gaese, K. Conservation value of forest plantations for bird communities in western Kenya. For. Ecol. Manage. 255, 3885–3892 (2008).

    Google Scholar 

  123. 123

    Fayle, T. M. et al. Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl. Ecol. 11, 337–345 (2010).

    Google Scholar 

  124. 124

    Felton, A. M., Engstrom, L. M., Felton, A. & Knott, C. D. Orangutan population density, forest structure and fruit availability in hand-logged and unlogged peat swamp forests in West Kalimantan, Indonesia. Biol. Conserv. 114, 91–101 (2003).

    Google Scholar 

  125. 125

    Fensham, R., Dwyer, J., Eyre, T., Fairfax, R. & Wang, J. The effect of clearing on plant composition in mulga (Acacia aneura) dry forest, Australia. Austral Ecol. 37, 183–192 (2012).

    Google Scholar 

  126. 126

    Fermon, H., Waltert, M., Vane-Wright, R. I. & Muhlenberg, M. Forest use and vertical stratification in fruit-feeding butterflies of Sulawesi, Indonesia: impacts for conservation. Biodivers. Conserv. 14, 333–350 (2005).

    Google Scholar 

  127. 127

    Ferreira, C. & Alves, P. C. Impacto da implementação de medidas de gestão do habitat nas populações de coelho-bravo (Oryctolagus cuniculus algirus) no Parque Natural do Sudoeste Alentejano e Costa Vicentina. (Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO, 2005).

  128. 128

    Fierro, M. M., Cruz-Lopez, L., Sanchez, D., Villanueva-Gutierrez, R. & Vandame, R. Effect of biotic factors on the spatial distribution of stingless bees (Hymenoptera: Apidae, Meliponini) in fragmented neotropical habitats. Neotrop. Entomol. 41, 95–104 (2012).

    CAS  PubMed  Google Scholar 

  129. 129

    Filgueiras, B., Iannuzzi, L. & Leal, I. Habitat fragmentation alters the structure of dung beetle communities in the Atlantic Forest. Biol. Conserv. 144, 362–369 (2011).

    Google Scholar 

  130. 130

    Flaspohler, D. J. et al. Long-term effects of fragmentation and fragment properties on bird species richness in Hawaiian forests. Biol. Conserv. 143, 280–288 (2010).

    Google Scholar 

  131. 131

    Fukuda, D., Tisen, O. B., Momose, K. & Sakai, S. Bat diversity in the vegetation mosaic around a lowland dipterocarp forest of Borneo. Raffles Bull. Zool. 57, 213–221 (2009).

    Google Scholar 

  132. 132

    Furlani, D., Ficetola, G. F., Colombo, G., Ugurlucan, M. & De Bernardi, F. Deforestation and the structure of frog communities in the Humedale Terraba-Sierpe, Costa Rica. Zoolog. Sci. 26, 197–202 (2009).

    PubMed  Google Scholar 

  133. 133

    Garden, J. G., McAlpine, C. A. & Possingham, H. P. Multi-scaled habitat considerations for conserving urban biodiversity: native reptiles and small mammals in Brisbane, Australia. Landscape Ecol. 25, 1013–1028 (2010).

    Google Scholar 

  134. 134

    Gardner, T. A., Hernandez, M. I. M., Barlow, J. & Peres, C. A. Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles. J. Appl. Ecol. 45, 883–893 (2008).

    Google Scholar 

  135. 135

    Gheler-Costa, C., Vettorazzi, C. A., Pardini, R. & Verdade, L. M. The distribution and abundance of small mammals in agroecosystems of southeastern Brazil. Mammalia 76, 185–191 (2012).

    Google Scholar 

  136. 136

    Giordani, P. Assessing the effects of forest management on epiphytic lichens in coppiced forests using different indicators. Plant Biosyst. 146, 628–637 (2012).

    Google Scholar 

  137. 137

    Giordano, S. et al. Biodiversity and trace element content of epiphytic bryophytes in urban and extraurban sites of southern Italy. Plant Ecol. 170, 1–14 (2004).

    Google Scholar 

  138. 138

    Golodets, C., Kigel, J. & Sternberg, M. Recovery of plant species composition and ecosystem function after cessation of grazing in a Mediterranean grassland. Plant Soil 329, 365–378 (2010).

    CAS  Google Scholar 

  139. 139

    Gottschalk, M. S., De Toni, D. C., Valente, V. L. S. & Hofmann, P. R. P. Changes in Brazilian Drosophilidae (Diptera) assemblages across an urbanisation gradient. Neotrop. Entomol. 36, 848–862 (2007).

    PubMed  Google Scholar 

  140. 140

    Goulson, D. et al. Effects of land use at a landscape scale on bumblebee nest density and survival. J. Appl. Ecol. 47, 1207–1215 (2010).

    Google Scholar 

  141. 141

    Goulson, D., Lye, G. C. & Darvill, B. Diet breadth, coexistence and rarity in bumblebees. Biodivers. Conserv. 17, 3269–3288 (2008).

    Google Scholar 

  142. 142

    Gove, A. D., Majer, J. D. & Rico-Gray, V. Methods for conservation outside of formal reserve systems: the case of ants in the seasonally dry tropics of Veracruz, Mexico. Biol. Conserv. 126, 328–338 (2005).

    Google Scholar 

  143. 143

    Grogan, J. et al. What loggers leave behind: impacts on big-leaf mahogany (Swietenia macrophylla) commercial populations and potential for post-logging recovery in the Brazilian Amazon. For. Ecol. Manage. 255, 269–281 (2008).

    Google Scholar 

  144. 144

    Gu, W.-B., Zhen-Rong, Y. & Dun-Xiao, H. Carabid community and its fluctuation in farmland of salinity transforming area in the North China Plain: a case study in Quzhou County, Hebei Province. Biodivers. Sci. 12, 262–268 (2004).

    Google Scholar 

  145. 145

    Gutierrez-Lamus, D. L. Composition and abundance of Anura in two forest types (natural and planted) in the eastern cordillera of Colombia. Caldasia 26, 245–264 (2004).

    Google Scholar 

  146. 146

    Hanley, M. E. et al. Increased bumblebee abundance along the margins of a mass flowering crop: evidence for pollinator spill-over. Oikos 120, 1618–1624 (2011).

    Google Scholar 

  147. 147

    Hanson, T. R., Brunsfeld, S. J., Finegan, B. & Waits, L. P. Pollen dispersal and genetic structure of the tropical tree Dipteryx panamensis in a fragmented Costa Rican landscape. Mol. Ecol. 17, 2060–2073 (2008).

    PubMed  Google Scholar 

  148. 148

    Hashim, N., Akmal, W., Jusoh, W. & Nasir, M. Ant diversity in a Peninsular Malaysian mangrove forest and oil palm plantation. Asian Myrmecology 3, 5–8 (2010).

    Google Scholar 

  149. 149

    Hatfield, R. G. & LeBuhn, G. Patch and landscape factors shape community assemblage of bumble bees, Bombus spp. (Hymenoptera: Apidae), in montane meadows. Biol. Conserv. 139, 150–158 (2007).

    Google Scholar 

  150. 150

    Hawes, J. et al. Diversity and composition of Amazonian moths in primary, secondary and plantation forests. J. Trop. Ecol. 25, 281–300 (2009).

    Google Scholar 

  151. 151

    Helden, A. J. & Leather, S. R. Biodiversity on urban roundabouts—Hemiptera, management and the species-area relationship. Basic Appl. Ecol. 5, 367–377 (2004).

    Google Scholar 

  152. 152

    Hernández, L., Delgado, L., Meier, W. & Duran, C. Empobrecimiento de bosques fragmentados en el norte de la Gran Sabana, Venezuela. Interciencia 37, 891–898 (2012).

    Google Scholar 

  153. 153

    Herrmann, F., Westphal, C., Moritz, R. F. A. & Steffan-Dewenter, I. Genetic diversity and mass resources promote colony size and forager densities of a social bee (Bombus pascuorum) in agricultural landscapes. Mol. Ecol. 16, 1167–1178 (2007).

    CAS  PubMed  Google Scholar 

  154. 154

    Hietz, P. Conservation of vascular epiphyte diversity in Mexican coffee plantations. Conserv. Biol. 19, 391–399 (2005).

    Google Scholar 

  155. 155

    Higuera, D. & Wolf, J. H. D. Vascular epiphytes in dry oak forests show resilience to anthropogenic disturbance, Cordillera Oriental, Colombia. Caldasia 32, 161–174 (2010).

    Google Scholar 

  156. 156

    Hilje, B. & Aide, T. M. Recovery of amphibian species richness and composition in a chronosequence of secondary forests, northeastern Costa Rica. Biol. Conserv. 146, 170–176 (2012).

    Google Scholar 

  157. 157

    Hoffmann, A. & Zeller, U. Influence of variations in land use intensity on species diversity and abundance of small mammals in the Nama Karoo, Namibia. Belg. J. Zool. 135, 91–96 (2005).

    Google Scholar 

  158. 158

    Horgan, F. G. Invasion and retreat: shifting assemblages of dung beetles amidst changing agricultural landscapes in central Peru. Biodivers. Conserv. 18, 3519–3541 (2009).

    Google Scholar 

  159. 159

    Hu, C. & Cao, Z. P. Nematode community structure under compost and chemical fertilizer management practice, in the north China plain. Exp. Agric. 44, 485–496 (2008).

    CAS  Google Scholar 

  160. 160

    Hylander, K. & Weibull, H. Do time-lagged extinctions and colonizations change the interpretation of buffer strip effectiveness? – a study of riparian bryophytes in the first decade after logging. J. Appl. Ecol. 49, 1316–1324 (2012).

    Google Scholar 

  161. 161

    Hylander, K. & Nemomissa, S. Complementary roles of home gardens and exotic tree plantations as alternative habitats for plants of the Ethiopian montane rainforest. Conserv. Biol. 23, 400–409 (2009).

    PubMed  Google Scholar 

  162. 162

    Ims, R. A. & Henden, J. A. Collapse of an arctic bird community resulting from ungulate-induced loss of erect shrubs. Biol. Conserv. 149, 2–5 (2012).

    Google Scholar 

  163. 163

    Cubides, P. J. I. & Cardona, J. N. U. Anthropogenic disturbance and edge effects on anuran assemblages inhabiting cloud forest fragments in Colombia. Natureza & Conservacao 9, 39–46 (2011).

    Google Scholar 

  164. 164

    Ishitani, M., Kotze, D. J. & Niemela, J. Changes in carabid beetle assemblages across an urban-rural gradient in Japan. Ecography 26, 481–489 (2003).

    Google Scholar 

  165. 165

    Jacobs, C. T., Scholtz, C. H., Escobar, F. & Davis, A. L. V. How might intensification of farming influence dung beetle diversity (Coleoptera: Scarabaeidae) in Maputo Special Reserve (Mozambique)?. J. Insect Conserv. 14, 389–399 (2010).

    Google Scholar 

  166. 166

    Johnson, M. F., Gómez, A. & Pinedo-Vasquez, M. Land use and mosquito diversity in the Peruvian Amazon. J. Med. Entomol. 45, 1023–1030 (2008).

    CAS  PubMed  Google Scholar 

  167. 167

    Jonsell, M. Old park trees as habitat for saproxylic beetle species. Biodivers. Conserv. 21, 619–642 (2012).

    Google Scholar 

  168. 168

    Julier, H. E. & Roulston, T. H. Wild bee abundance and pollination service in cultivated pumpkins: farm management, nesting behavior and landscape effects. J. Econ. Entomol. 102, 563–573 (2009).

    PubMed  Google Scholar 

  169. 169

    Jung, T. S. & Powell, T. Spatial distribution of meadow jumping mice (Zapus hudsonius) in logged boreal forest of northwestern Canada. Mamm. Biol. 76, 678–682 (2011).

    Google Scholar 

  170. 170

    Kapoor, V. Effects of rainforest fragmentation and shade-coffee plantations on spider communities in the Western Ghats, India. J. Insect Conserv. 12, 53–68 (2008).

    Google Scholar 

  171. 171

    Kappes, H., Katzschner, L. & Nowak, C. Urban summer heat load: meteorological data as a proxy for metropolitan biodiversity. Meteorologische Zeitschrift 21, 525–528 (2012).

    ADS  Google Scholar 

  172. 172

    Kati, V., Zografou, K., Tzirkalli, E., Chitos, T. & Willemse, L. Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: the roles of disturbance and environmental factors. J. Insect Conserv. 16, 807–818 (2012).

    Google Scholar 

  173. 173

    Katovai, E., Burley, A. L. & Mayfield, M. M. Understory plant species and functional diversity in the degraded wet tropical forests of Kolombangara Island, Solomon Islands. Biol. Conserv. 145, 214–224 (2012).

    Google Scholar 

  174. 174

    Kessler, M. et al. Tree diversity in primary forest and different land use systems in Central Sulawesi, Indonesia. Biodivers. Conserv. 14, 547–560 (2005).

    Google Scholar 

  175. 175

    Kessler, M. et al. Alpha and beta diversity of plants and animals along a tropical land-use gradient. Ecol. Appl. 19, 2142–2156 (2009).

    PubMed  Google Scholar 

  176. 176

    Knight, M. E. et al. Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conserv. Divers. 2, 116–124 (2009).

    Google Scholar 

  177. 177

    Knop, E., Ward, P. I. & Wich, S. A. A comparison of orang-utan density in a logged and unlogged forest on Sumatra. Biol. Conserv. 120, 183–188 (2004).

    Google Scholar 

  178. 178

    Kohler, F., Verhulst, J., van Klink, R. & Kleijn, D. At what spatial scale do high-quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes?. J. Appl. Ecol. 45, 753–762 (2008).

    Google Scholar 

  179. 179

    Koivula, M., Hyyrylainen, V. & Soininen, E. Carabid beetles (Coleoptera: Carabidae) at forest-farmland edges in southern Finland. J. Insect Conserv. 8, 297–309 (2004).

    Google Scholar 

  180. 180

    Kolb, A. & Diekmann, M. Effects of environment, habitat configuration and forest continuity on the distribution of forest plant species. J. Veg. Sci. 15, 199–208 (2004).

    Google Scholar 

  181. 181

    Ko˝rösi, Á., Batáry, P., Orosz, A., Rédei, D. & Báldi, A. Effects of grazing, vegetation structure and landscape complexity on grassland leafhoppers (Hemiptera: Auchenorrhyncha) and true bugs (Hemiptera: Heteroptera) in Hungary. Insect Conserv. Divers. 5, 57–66 (2012).

    Google Scholar 

  182. 182

    Krauss, J., Klein, A. M., Steffan-Dewenter, I. & Tscharntke, T. Effects of habitat area, isolation, and landscape diversity on plant species richness of calcareous grasslands. Biodivers. Conserv. 13, 1427–1439 (2004).

    Google Scholar 

  183. 183

    Krauss, J., Steffan-Dewenter, I. & Tscharntke, T. How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies?. J. Biogeogr. 30, 889–900 (2003).

    Google Scholar 

  184. 184

    Kumar, R. & Shahabuddin, G. Effects of biomass extraction on vegetation structure, diversity and composition of forests in Sariska Tiger Reserve, India. Environ. Conserv. 32, 248–259 (2005).

    Google Scholar 

  185. 185

    Lachat, T. et al. Arthropod diversity in Lama forest reserve (South Benin), a mosaic of natural, degraded and plantation forests. Biodivers. Conserv. 15, 3–23 (2006).

    Google Scholar 

  186. 186

    Lantschner, M. V., Rusch, V. & Hayes, J. P. Habitat use by carnivores at different spatial scales in a plantation forest landscape in Patagonia, Argentina. For. Ecol. Manage. 269, 271–278 (2012).

    Google Scholar 

  187. 187

    Lantschner, M. V., Rusch, V. & Peyrou, C. Bird assemblages in pine plantations replacing native ecosystems in NW Patagonia. Biodivers. Conserv. 17, 969–989 (2008).

    Google Scholar 

  188. 188

    Latta, S. C., Tinoco, B. A., Astudillo, P. X. & Graham, C. H. Patterns and magnitude of temporal change in avian communities in the Ecuadorian Andes. Condor 113, 24–40 (2011).

    Google Scholar 

  189. 189

    Légaré, J.-P., Hébert, C. & Ruel, J.-C. Alternative silvicultural practices in irregular boreal forests: response of beetle assemblages. Silva Fennica 45, 937–956 (2011).

    Google Scholar 

  190. 190

    Letcher, S. G. & Chazdon, R. L. Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica 41, 608–617 (2009).

    Google Scholar 

  191. 191

    Littlewood, N. A., Pakeman, R. J. & Pozsgai, G. Grazing impacts on Auchenorrhyncha diversity and abundance on a Scottish upland estate. Insect Conserv. Divers. 5, 67–74 (2012).

    Google Scholar 

  192. 192

    Liu, Y. H., Axmacher, J. C., Wang, C. L., Li, L. T. & Yu, Z. R. Ground beetle (Coleoptera: Carabidae) assemblages of restored semi-natural habitats and intensively cultivated fields in northern China. Restor. Ecol. 20, 234–239 (2012).

    Google Scholar 

  193. 193

    Lo-Man-Hung, N. F., Gardner, T. A., Ribeiro-Júnior, M. A., Barlow, J. & Bonaldo, A. B. The value of primary, secondary, and plantation forests for Neotropical epigeic arachnids. J. Arachnol. 36, 394–401 (2008).

    Google Scholar 

  194. 194

    López-Quintero, C. A., Straatsma, G., Franco-Molano, A. E. & Boekhout, T. Macrofungal diversity in Colombian Amazon forests varies with regions and regimes of disturbance. Biodivers. Conserv. 21, 2221–2243 (2012).

    Google Scholar 

  195. 195

    Louhaichi, M., Salkini, A. K. & Petersen, S. L. Effect of small ruminant grazing on the plant community characteristics of semiarid Mediterranean ecosystems. Int. J. Agric. Bio. 11, 681–689 (2009).

    Google Scholar 

  196. 196

    Lucas-Borja, M. E. et al. The effects of human trampling on the microbiological properties of soil and vegetation in Mediterranean mountain areas. Land Degrad. Dev. 22, 383–394 (2011).

    Google Scholar 

  197. 197

    Luja, V., Herrando-Perez, S., Gonzalez-Solis, D. & Luiselli, L. Secondary rain forests are not havens for reptile species in tropical Mexico. Biotropica 40, 747–757 (2008).

    Google Scholar 

  198. 198

    Luskin, M. S. Flying foxes prefer to forage in farmland in a tropical dry forest landscape mosaic in Fiji. Biotropica 42, 246–250 (2010).

    Google Scholar 

  199. 199

    MacSwiney, M. C. G., Vilchis, P. L., Clarke, F. M. & Racey, P. A. The importance of cenotes in conserving bat assemblages in the Yucatan, Mexico. Biol. Conserv. 136, 499–509 (2007).

    Google Scholar 

  200. 200

    Maeto, K. & Sato, S. Impacts of forestry on ant species richness and composition in warm-temperate forests of Japan. For. Ecol. Manage. 187, 213–223 (2004).

    Google Scholar 

  201. 201

    Magura, T., Horvath, R. & Tothmeresz, B. Effects of urbanization on ground-dwelling spiders in forest patches, in Hungary. Landscape Ecol. 25, 621–629 (2010).

    Google Scholar 

  202. 202

    Mallari, N. A. D. et al. Population densities of understorey birds across a habitat gradient in Palawan, Philippines: implications for conservation. Oryx 45, 234–242 (2011).

    Google Scholar 

  203. 203

    Malone, L. et al. Observations on bee species visiting white clover in New Zealand pastures. J. Apic. Res. 49, 284–286 (2010).

    Google Scholar 

  204. 204

    Marín-Spiotta, E., Ostertag, R. & Silver, W. L. Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. Ecol. Appl. 17, 828–839 (2007).

    PubMed  Google Scholar 

  205. 205

    Marshall, E. J. P., West, T. M. & Kleijn, D. Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric. Ecosyst. Environ. 113, 36–44 (2006).

    Google Scholar 

  206. 206

    Martin, P. S., Gheler-Costa, C., Lopes, P. C., Rosalino, L. M. & Verdade, L. M. Terrestrial non-volant small mammals in agro-silvicultural landscapes of Southeastern Brazil. For. Ecol. Manage. 282, 185–195 (2012).

    Google Scholar 

  207. 207

    Matsumoto, T., Itioka, T., Yamane, S. & Momose, K. Traditional land use associated with swidden agriculture changes encounter rates of the top predator, the army ant, in Southeast Asian tropical rain forests. Biodivers. Conserv. 18, 3139–3151 (2009).

    Google Scholar 

  208. 208

    Mayfield, M. M., Ackerly, D. & Daily, G. C. The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. J. Ecol. 94, 522–536 (2006).

    Google Scholar 

  209. 209

    McFrederick, Q. S. & LeBuhn, G. Are urban parks refuges for bumble bees Bombus spp. (Hymenoptera: Apidae)?. Biol. Conserv. 129, 372–382 (2006).

    Google Scholar 

  210. 210

    McNamara, S., Erskine, P. D., Lamb, D., Chantalangsy, L. & Boyle, S. Primary tree species diversity in secondary fallow forests of Laos. For. Ecol. Manage. 281, 93–99 (2012).

    Google Scholar 

  211. 211

    Meyer, B., Gaebele, V. & Steffan-Dewenter, I. D. Patch size and landscape effects on pollinators and seed set of the horseshoe vetch, hippocrepis comosa, in an agricultural landscape of central Europe. Entomol. Gen. 30, 173–185 (2007).

    Google Scholar 

  212. 212

    Meyer, B., Jauker, F. & Steffan-Dewenter, I. Contrasting resource-dependent responses of hoverfly richness and density to landscape structure. Basic Appl. Ecol. 10, 178–186 (2009).

    Google Scholar 

  213. 213

    Micó, E., Garcia-Lopez, A., Brustel, H., Padilla, A. & Galante, E. Explaining the saproxylic beetle diversity of a protected Mediterranean area. Biodivers. Conserv. 22, 889–904 (2013).

    Google Scholar 

  214. 214

    Milder, J. C. et al. Effects of farm and landscape management on bird and butterfly conservation in western Honduras. Ecosphere 1, art2 (2010).

    Google Scholar 

  215. 215

    Miranda, M. V., Politi, N. & Rivera, L. O. Unexpected changes in the bird assemblage in areas under selective logging in piedmont forest in northwestern Argentina. Ornitol. Neotrop. 21, 323–337 (2010).

    Google Scholar 

  216. 216

    Moreno-Mateos, D. et al. Effects of land use on nocturnal birds in a Mediterranean agricultural landscape. Acta Ornithologica 46, 173–182 (2011).

    Google Scholar 

  217. 217

    Muchane, M. N. et al. Land use practices and their implications on soil macro-fauna in Maasai Mara ecosystem. Int. J. Biodivers. Conserv. 4, 500–514 (2012).

    Google Scholar 

  218. 218

    Mudri-Stojnic, S., Andric, A., Jozan, Z. & Vujic, A. Pollinator diversity (Hymenoptera and Diptera) in semi-natural habitats in Serbia during summer. Archives Bio. Sci. 64, 777–786 (2012).

    Google Scholar 

  219. 219

    Naidoo, R. Species richness and community composition of songbirds in a tropical forest-agricultural landscape. Anim. Conserv. 7, 93–105 (2004).

    Google Scholar 

  220. 220

    Nakamura, A., Proctor, H. & Catterall, C. P. Using soil and litter arthropods to assess the state of rainforest restoration. Ecol. Manage. Restor. 4, S20–S28 (2003).

    Google Scholar 

  221. 221

    Naoe, S., Sakai, S. & Masaki, T. Effect of forest shape on habitat selection of birds in a plantation-dominant landscape across seasons: comparison between continuous and strip forests. J. For. Res. 17, 219–223 (2012).

    Google Scholar 

  222. 222

    Navarrete, D. & Halffter, G. Dung beetle (Coleoptera: Scarabaeidae: Scarabaeinae) diversity in continuous forest, forest fragments and cattle pastures in a landscape of Chiapas, Mexico: the effects of anthropogenic changes. Biodivers. Conserv. 17, 2869–2898 (2008).

    Google Scholar 

  223. 223

    Navarro, I. L., Roman, A. K., Gomez, F. H. & Perez, H. A. Seasonal variation in dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) from Serrania de Coraza, Sucre (Colombia). Revista Colombiana de Ciencia Animal 3, 102–110 (2011).

    Google Scholar 

  224. 224

    Neuschulz, E. L., Botzat, A. & Farwig, N. Effects of forest modification on bird community composition and seed removal in a heterogeneous landscape in South Africa. Oikos 120, 1371–1379 (2011).

    Google Scholar 

  225. 225

    Nicolas, V., Barriere, P., Tapiero, A. & Colyn, M. Shrew species diversity and abundance in Ziama Biosphere Reserve, Guinea: comparison among primary forest, degraded forest and restoration plots. Biodivers. Conserv. 18, 2043–2061 (2009).

    Google Scholar 

  226. 226

    Nielsen, A. et al. Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecol. Res. 26, 969–983 (2011).

    Google Scholar 

  227. 227

    Noreika, N. & Kotze, D. J. Forest edge contrasts have a predictable effect on the spatial distribution of carabid beetles in urban forests. J. Insect Conserv. 16, 867–881 (2012).

    Google Scholar 

  228. 228

    Noreika, N. New records of rare species of Coleoptera found in Ukmergė district in 2004–2005. New Rare Lithuania Insect Species 21, 68–71 (2009).

    Google Scholar 

  229. 229

    Norfolk, O., Abdel-Dayem, M. & Gilbert, F. Rainwater harvesting and arthropod biodiversity within an arid agro-ecosystem. Agric. Ecosyst. Environ. 162, 8–14 (2012).

    Google Scholar 

  230. 230

    Noriega, J. A., Realpe, E. & Fagua, G. Diversidad de escarabajos coprofagos (Coleoptera: Scarabaeidae) en un bosque de galeria con tres estadios de alteracion. Universitas Scientiarum 12, 51–63 (2007).

    Google Scholar 

  231. 231

    Noriega, J. A., Palacio, J. M., Monroy-G, J. D. & Valencia, E. Estructura de un ensamblaje de escarabajos coprofagos (Coleoptera: Scarabaeinae) en tres sitios con diferente uso del suelo en Antioquia, Colombia. Actualidades Biologicas (Medellin) 34, 43–54 (2012).

    Google Scholar 

  232. 232

    Nöske, N. M. et al. Disturbance effects on diversity of epiphytes and moths in a montane forest in Ecuador. Basic Appl. Ecol. 9, 4–12 (2008).

    Google Scholar 

  233. 233

    Numa, C., Verdu, J. R., Rueda, C. & Galante, E. Comparing dung beetle species assemblages between protected areas and adjacent pasturelands in a Mediterranean savanna landscape. Rangeland Ecol. Manag. 65, 137–143 (2012).

    Google Scholar 

  234. 234

    O’Connor, T. G. Influence of land use on plant community composition and diversity in Highland Sourveld grassland in the southern Drakensberg, South Africa. J. Appl. Ecol. 42, 975–988 (2005).

    Google Scholar 

  235. 235

    O’Dea, N. & Whittaker, R. J. How resilient are Andean montane forest bird communities to habitat degradation?. Biodivers. Conserv. 16, 1131–1159 (2007).

    Google Scholar 

  236. 236

    Ofori-Boateng, C. et al. Differences in the effects of selective logging on amphibian assemblages in three West African forest types. Biotropica 45, 94–101 (2013).

    Google Scholar 

  237. 237

    Oke, C. Land snail diversity in post extraction secondary forest reserves in Edo State, Nigeria. Afr. J. Ecol. 51, 244–254 (2013).

    Google Scholar 

  238. 238

    Oke, C. O. & Chokor, J. U. The effect of land use on snail species richness and diversity in the tropical rainforest of south-western Nigeria. Am. Sci. 10, 95–108 (2009).

    Google Scholar 

  239. 239

    Oliveira, D. E., Carrijo, T. F. & Brandão, D. Species composition of termites (Isoptera) in different Cerrado vegetation physiognomies. Sociobiology 60, 190–197 (2013).

    Google Scholar 

  240. 240

    Osgathorpe, L. M., Park, K. & Goulson, D. The use of off-farm habitats by foraging bumblebees in agricultural landscapes: implications for conservation management. Apidologie (Celle) 43, 113–127 (2012).

    Google Scholar 

  241. 241

    Otavo, S. E., Parrado-Rosselli, A. & Noriega, J. A. Scarabaeoidea superfamily (Insecta: Coleoptera) as a bioindicator element of anthropogenic disturbance in an amazon national park. Rev. Biol. Trop. 61, 735–752 (2013).

    PubMed  Google Scholar 

  242. 242

    Otto, C. R. V. & Roloff, G. J. Songbird response to green-tree retention prescriptions in clearcut forests. For. Ecol. Manage. 284, 241–250 (2012).

    Google Scholar 

  243. 243

    Paradis, S. & Work, T. T. Partial cutting does not maintain spider assemblages within the observed range of natural variability in Eastern Canadian black spruce forests. For. Ecol. Manage. 262, 2079–2093 (2011).

    Google Scholar 

  244. 244

    Paritsis, J. & Aizen, M. A. Effects of exotic conifer plantations on the biodiversity of understory plants, epigeal beetles and birds in Nothofagus dombeyi forests. For. Ecol. Manage. 255, 1575–1583 (2008).

    Google Scholar 

  245. 245

    Parra-H, A. & Nates-Parra, G. Variation of the orchid bees community (Hymenoptera: Apidae) in three altered habitats of the Colombian “llano” piedmont. Rev. Biol. Trop. 55, 931–941 (2007).

    PubMed  Google Scholar 

  246. 246

    Pelegrin, N. & Bucher, E. H. Effects of habitat degradation on the lizard assemblage in the Arid Chaco, central Argentina. J. Arid Environ. 79, 13–19 (2012).

    ADS  Google Scholar 

  247. 247

    Phalan, B., Onial, M., Balmford, A. & Green, R. Reconciling food production and biodiversity conservation: land sharing and land sparing compared. Science 333, 1289–1291 (2011).

    ADS  CAS  Google Scholar 

  248. 248

    Pillsbury, F. C. & Miller, J. R. Habitat and landscape characteristics underlying anuran community structure along an urban-rural gradient. Ecol. Appl. 18, 1107–1118 (2008).

    PubMed  Google Scholar 

  249. 249

    Pineda, E. & Halffter, G. Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biol. Conserv. 117, 499–508 (2004).

    Google Scholar 

  250. 250

    Politi, N., Hunter, M., Jr & Rivera, L. Assessing the effects of selective logging on birds in Neotropical piedmont and cloud montane forests. Biodivers. Conserv. 21, 3131–3155 (2012).

    Google Scholar 

  251. 251

    Poveda, K., Martinez, E., Kersch-Becker, M., Bonilla, M. & Tscharntke, T. Landscape simplification and altitude affect biodiversity, herbivory and Andean potato yield. J. Appl. Ecol. 49, 513–522 (2012).

    Google Scholar 

  252. 252

    Power, E. F., Kelly, D. L. & Stout, J. C. Organic farming and landscape structure: effects on insect-pollinated plant diversity in intensively managed grasslands. PLoS ONE 7, (2012).

  253. 253

    Power, E. F. & Stout, J. C. Organic dairy farming: impacts on insect-flower interaction networks and pollination. J. Appl. Ecol. 48, 561–569 (2011).

    Google Scholar 

  254. 254

    Presley, S. J., Willig, M. R., Wunderle, J. M., Jr & Saldanha, L. N. Effects of reduced-impact logging and forest physiognomy on bat populations of lowland Amazonian forest. J. Appl. Ecol. 45, 14–25 (2008).

    Google Scholar 

  255. 255

    Proenca, V. M., Pereira, H. M., Guilherme, J. & Vicente, L. Plant and bird diversity in natural forests and in native and exotic plantations in NW Portugal. Acta Oecologica 36, 219–226 (2010).

    ADS  Google Scholar 

  256. 256

    Quaranta, M. et al. Wild bees in agroecosystems and semi-natural landscapes. 1997-2000 collection period in Italy. Bull. Insectology 57, 11–62 (2004).

    Google Scholar 

  257. 257

    Quintero, C., Laura Morales, C. & Adrian Aizen, M. Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodivers. Conserv. 19, 257–274 (2010).

    Google Scholar 

  258. 258

    Redpath, N., Osgathorpe, L. M., Park, K. & Goulson, D. Crofting and bumblebee conservation: The impact of land management practices on bumblebee populations in northwest Scotland. Biol. Conserv. 143, 492–500 (2010).

    Google Scholar 

  259. 259

    Reid, J. L., Harris, J. B. C. & Zahawi, R. A. Avian habitat preference in tropical forest restoration in southern Costa Rica. Biotropica 44, 350–359 (2012).

    Google Scholar 

  260. 260

    Reis, Y. T. & Cancello, E. M. Termite (Insecta, Isoptera) richness in primary and secondary Atlantic Forest in southeastern Bahia. Iheringia Serie Zoologia 97, 229–234 (2007).

    Google Scholar 

  261. 261

    Rey-Velasco, J. C. & Miranda-Esquivel, D. R. Habitat modification in Andean forest: the response of ground beetles (Coleoptera: Carabidae) on the northeastern Colombian Andes. BSc thesis, Universidad Industrial de Santander,. (2010).

  262. 262

    Ribeiro, D. B. & Freitas, A. V. L. The effect of reduced-impact logging on fruit-feeding butterflies in Central Amazon, Brazil. J. Insect Conserv. 16, 733–744 (2012).

    Google Scholar 

  263. 263

    Richardson, B. A., Richardson, M. J. & Soto-Adames, F. N. Separating the effects of forest type and elevation on the diversity of litter invertebrate communities in a humid tropical forest in Puerto Rico. J. Anim. Ecol. 74, 926–936 (2005).

    Google Scholar 

  264. 264

    Robles, C. A., Carmaran, C. C. & Lopez, S. E. Screening of xylophagous fungi associated with Platanus acerifolia in urban landscapes: biodiversity and potential biodeterioration. Landsc. Urban Plan. 100, 129–135 (2011).

    Google Scholar 

  265. 265

    Rodrigues, M. M., Uchoa, M. A. & Ide, S. Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Braz. J. Biol. 73, 211–220 (2013).

    CAS  PubMed  Google Scholar 

  266. 266

    Römbke, J., Schmidt, P. & Höfer, H. The earthworm fauna of regenerating forests and anthropogenic habitats in the coastal region of Paraná. Pesquisa Agropecu. Bras. 44, 1040–1049 (2009).

    Google Scholar 

  267. 267

    Romero-Duque, L. P., Jaramillo, V. J. & Perez-Jimenez, A. Structure and diversity of secondary tropical dry forests in Mexico, differing in their prior land-use history. For. Ecol. Manage. 253, 38–47 (2007).

    Google Scholar 

  268. 268

    Rosselli, L. Factores ambientales relacionados con la presencia y abundancia de las aves de los humedales de la Sabana de Bogotá. PhD thesis, Universidad Nacional de Colombia,. (2011).

  269. 269

    Rousseau, L., Fonte, S. J., Tellez, O., van der Hoek, R. & Lavelle, P. Soil macrofauna as indicators of soil quality and land use impacts in smallholder agroecosystems of western Nicaragua. Ecol. Indic. 27, 71–82 (2013).

    CAS  Google Scholar 

  270. 270

    Safian, S., Csontos, G. & Winkler, D. Butterfly community recovery in degraded rainforest habitats in the Upper Guinean forest zone (Kakum forest, Ghana). J. Insect Conserv. 15, 351–359 (2011).

    Google Scholar 

  271. 271

    Sakchoowong, W., Nomura, S., Ogata, K. & Chanpaisaeng, J. Diversity of pselaphine beetles (Coleoptera: Staphylinidae: Pselaphinae) in eastern Thailand. Entomol. Sci. 11, 301–313 (2008).

    Google Scholar 

  272. 272

    Saldana-Vazquez, R. A., Sosa, V. J., Hernandez-Montero, J. R. & Lopez-Barrera, F. Abundance responses of frugivorous bats (Stenodermatinae) to coffee cultivation and selective logging practices in mountainous central Veracruz, Mexico. Biodivers. Conserv. 19, 2111–2124 (2010).

    Google Scholar 

  273. 273

    Samnegård, U., Persson, A. S. & Smith, H. G. Gardens benefit bees and enhance pollination in intensively managed farmland. Biol. Conserv. 144, 2602–2606 (2011).

    Google Scholar 

  274. 274

    Santana, J., Porto, M., Gordinho, L., Reino, L. & Beja, P. Long-term responses of Mediterranean birds to forest fuel management. J. Appl. Ecol. 49, 632–643 (2012).

    Google Scholar 

  275. 275

    Savage, J., Wheeler, T. A., Moores, A. M. A. & Taillefer, A. G. Effects of habitat size, vegetation cover, and surrounding land use on diptera diversity in temperate nearctic bogs. Wetlands 31, 125–134 (2011).

    Google Scholar 

  276. 276

    Schmidt, A. C., Fraser, L. H., Carlyle, C. N. & Bassett, E. R. L. Does cattle grazing affect ant abundance and diversity in temperate grasslands?. Rangeland Ecol. Manag. 65, 292–298 (2012).

    Google Scholar 

  277. 277

    Schon, N. L., Mackay, A. D. & Minor, M. A. Soil fauna in sheep-grazed hill pastures under organic and conventional livestock management and in an adjacent ungrazed pasture. Pedobiologia (Jena) 54, 161–168 (2011).

    Google Scholar 

  278. 278

    Schüepp, C., Herrmann, J. D., Herzog, F. & Schmidt-Entling, M. H. Differential effects of habitat isolation and landscape composition on wasps, bees, and their enemies. Oecologia 165, 713–721 (2011).

    ADS  PubMed  Google Scholar 

  279. 279

    Schüepp, C., Rittiner, S. & Entling, M. H. High bee and wasp diversity in a heterogeneous tropical farming system compared to protected forest. PLoS ONE 7, (2012).

  280. 280

    Scott, D. M. et al. The impacts of forest clearance on lizard, small mammal and bird communities in the arid spiny forest, southern Madagascar. Biol. Conserv. 127, 72–87 (2006).

    Google Scholar 

  281. 281

    Sedlock, J. L. et al. Bat diversity in tropical forest and agro-pastoral habitats within a protected area in the Philippines. Acta Chiropt. 10, 349–358 (2008).

    Google Scholar 

  282. 282

    Shafie, N. J., Sah, S. A. M., Latip, N. S. A., Azman, N. M. & Khairuddin, N. L. Diversity pattern of bats at two contrasting habitat types along Kerian River, Perak, Malaysia. Trop. Life Sci. Res. 22, 13–22 (2011).

    PubMed  PubMed Central  Google Scholar 

  283. 283

    Shahabuddin, G. & Kumar, R. Effects of extractive disturbance on bird assemblages, vegetation structure and floristics in tropical scrub forest, Sariska Tiger Reserve, India. For. Ecol. Manage. 246, 175–185 (2007).

    Google Scholar 

  284. 284

    Sheil, D. et al. Exploring biological diversity, environment and local people’s perspectives in forest landscapes: Methods for a multidisciplinary landscape assessment. (Center for International Forestry Research (CIFOR) Jakarta 2002).

  285. 285

    Sheldon, F., Styring, A. & Hosner, P. Bird species richness in a Bornean exotic tree plantation: a long-term perspective. Biol. Conserv. 143, 399–407 (2010).

    Google Scholar 

  286. 286

    Shuler, R. E., Roulston, T. H. & Farris, G. E. Farming practices influence wild pollinator populations on squash and pumpkin. J. Econ. Entomol. 98, 790–795 (2005).

    PubMed  Google Scholar 

  287. 287

    Silva, F. A. B., Costa, C. M. Q., Moura, R. C. & Farias, A. I. Study of the dung beetle (Coleoptera: Scarabaeidae) community at two sites: atlantic forest and clear-cut, Pernambuco, Brazil. Environ. Entomol. 39, 359–367 (2010).

    CAS  PubMed  Google Scholar 

  288. 288

    da Silva, P. G. Espécies de Scarabaeinae (Coleoptera: Scarabaeidae) de fragmentos florestais com diferentes níveis de alteração em Santa Maria, Rio Grande do Sul. MSc thesis, Universidade Federal de Santa Maria,. (2011).

  289. 289

    Slade, E. M., Mann, D. J. & Lewis, O. T. Biodiversity and ecosystem function of tropical forest dung beetles under contrasting logging regimes. Biol. Conserv. 144, 166–174 (2011).

    Google Scholar 

  290. 290

    Smith-Pardo, A. & Gonzalez, V. H. Bee diversity (Hymenoptera: Apoidea) in a tropical rainforest succession. Acta Biologica Colombiana 12, 43–55 (2007).

    Google Scholar 

  291. 291

    Sodhi, N. S. et al. Deforestation and avian extinction on tropical landbridge islands. Conserv. Biol. 24, 1290–1298 (2010).

    PubMed  Google Scholar 

  292. 292

    Sosa, R. A., Benz, V. A., Galea, J. M. & Poggio Herrero, I. V. Efecto del grado de disturbio sobre el ensamble de aves en la reserva provincial Parque Luro, La Pampa, Argentina. Revista de la Asociación Argentina de Ecología de Paisajes 1, 101–110 (2010).

    Google Scholar 

  293. 293

    de Souza, V. M., de Souza, B. & Morato, E. F. Effect of the forest succession on the anurans (Amphibia: Anura) of the Reserve Catuaba and its periphery, Acre, southwestern Amazonia. Revista Brasileira De Zoologia 25, 49–57 (2008).

    Google Scholar 

  294. 294

    Sridhar, H., Raman, T. R. S. & Mudappa, D. Mammal persistence and abundance in tropical rainforest remnants in the southern Western Ghats, India. Curr. Sci. 94, 748–757 (2008).

    Google Scholar 

  295. 295

    St-Laurent, M. H., Ferron, J., Hins, C. & Gagnon, R. Effects of stand structure and landscape characteristics an habitat use by birds and small mammals in managed boreal forest of eastern Canada. Can. J. For. Res. 37, 1298–1309 (2007).

    Google Scholar 

  296. 296

    Ström, L., Hylander, K. & Dynesius, M. Different long-term and short-term responses of land snails to clear-cutting of boreal stream-side forests. Biol. Conserv. 142, 1580–1587 (2009).

    Google Scholar 

  297. 297

    Struebig, M. J., Kingston, T., Zubaid, A., Mohd-Adnan, A. & Rossiter, S. J. Conservation value of forest fragments to Palaeotropical bats. Biol. Conserv. 141, 2112–2126 (2008).

    Google Scholar 

  298. 298

    Su, Z. M., Zhang, R. Z. & Qiu, J. X. Decline in the diversity of willow trunk-dwelling weevils (Coleoptera: Curculionoidea) as a result of urban expansion in Beijing, China. J. Insect Conserv. 15, 367–377 (2011).

    Google Scholar 

  299. 299

    Sugiura, S., Tsuru, T., Yamaura, Y. & Makihara, H. Small off-shore islands can serve as important refuges for endemic beetle conservation. J. Insect Conserv. 13, 377–385 (2009).

    Google Scholar 

  300. 300

    Summerville, K. S. Managing the forest for more than the trees: effects of experimental timber harvest on forest Lepidoptera. Ecol. Appl. 21, 806–816 (2011).

    PubMed  Google Scholar 

  301. 301

    Summerville, K. S., Conoan, C. J. & Steichen, R. M. Species traits as predictors of Lepidopteran composition in restored and remnant tallgrass prairies. Ecol. Appl. 16, 891–900 (2006).

    PubMed  Google Scholar 

  302. 302

    Sung, Y. H., Karraker, N. E. & Hau, B. C. H. Terrestrial herpetofaunal assemblages in secondary forests and exotic Lophostemon confertus plantations in South China. For. Ecol. Manage. 270, 71–77 (2012).

    Google Scholar 

  303. 303

    Threlfall, C. G., Law, B. & Banks, P. B. Sensitivity of insectivorous bats to urbanization: implications for suburban conservation planning. Biol. Conserv. 146, 41–52 (2012).

    Google Scholar 

  304. 304

    Tonietto, R., Fant, J., Ascher, J., Ellis, K. & Larkin, D. A comparison of bee communities of Chicago green roofs, parks and prairies. Landsc. Urban Plan. 103, 102–108 (2011).

    Google Scholar 

  305. 305

    Turner, E. C. & Foster, W. A. The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah, Malaysia. J. Trop. Ecol. 25, 23–30 (2009).

    Google Scholar 

  306. 306

    Tylianakis, J. M., Klein, A. M. & Tscharntke, T. Spatiotemporal variation in the diversity of hymenoptera across a tropical habitat gradient. Ecology 86, 3296–3302 (2005).

    Google Scholar 

  307. 307

    Vanbergen, A. J., Woodcock, B. A., Watt, A. D. & Niemela, J. Effect of land-use heterogeneity on carabid communities at the landscape scale. Ecography 28, 3–16 (2005).

    Google Scholar 

  308. 308

    Vassilev, K., Pedashenko, H., Nikolov, S. C., Apostolova, I. & Dengler, J. Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts. Bulgaria. Plant Biosyst. 145, 654–665 (2011).

    Google Scholar 

  309. 309

    Vázquez, D. P. & Simberloff, D. Ecological specialization and susceptibility to disturbance: conjectures and refutations. Am. Nat. 159, 606–623 (2002).

    PubMed  Google Scholar 

  310. 310

    Verboven, H. A. F., Brys, R. & Hermy, M. Sex in the city: reproductive success of Digitalis purpurea in a gradient from urban to rural sites. Landsc. Urban Plan. 106, 158–164 (2012).

    Google Scholar 

  311. 311

    Verdasca, M. J. et al. Forest fuel management as a conservation tool for early successional species under agricultural abandonment: The case of Mediterranean butterflies. Biol. Conserv. 146, 14–23 (2012).

    Google Scholar 

  312. 312

    Verdú, J. R. et al. Grazing promotes dung beetle diversity in the xeric landscape of a Mexican Biosphere Reserve. Biol. Conserv. 140, 308–317 (2007).

    Google Scholar 

  313. 313

    Vergara, C. H. & Badano, E. I. Pollinator diversity increases fruit production in Mexican coffee plantations: the importance of rustic management systems. Agric. Ecosyst. Environ. 129, 117–123 (2009).

    Google Scholar 

  314. 314

    Vergara, P. M. & Simonetti, J. A. Avian responses to fragmentation of the Maulino Forest in central Chile. Oryx 38, 383–388 (2004).

    Google Scholar 

  315. 315

    Walker, T. R., Crittenden, P. D., Young, S. D. & Prystina, T. An assessment of pollution impacts due to the oil and gas industries in the Pechora basin, north-eastern European Russia. Ecol. Indic. 6, 369–387 (2006).

    CAS  Google Scholar 

  316. 316

    Wang, Y., Bao, Y., Yu, M., Xu, G. & Ding, P. Nestedness for different reasons: the distributions of birds, lizards and small mammals on islands of an inundated lake. Divers. Distrib. 16, 862–873 (2010).

    Google Scholar 

  317. 317

    Watling, J. I., Gerow, K. & Donnelly, M. A. Nested species subsets of amphibians and reptiles on Neotropical forest islands. Anim. Conserv. 12, 467–476 (2009).

    Google Scholar 

  318. 318

    Weller, B. & Ganzhorn, J. U. Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Basic Appl. Ecol. 5, 193–201 (2004).

    Google Scholar 

  319. 319

    Wells, K., Kalko, E. K. V., Lakim, M. B. & Pfeiffer, M. Effects of rain forest logging on species richness and assemblage composition of small mammals in Southeast Asia. J. Biogeogr. 34, 1087–1099 (2007).

    Google Scholar 

  320. 320

    Williams, C. D., Sheahan, J. & Gormally, M. J. Hydrology and management of turloughs (temporary lakes) affect marsh fly (Sciomyzidae: Diptera) communities. Insect Conserv. Divers. 2, 270–283 (2009).

    Google Scholar 

  321. 321

    Willig, M. R. et al. Phyllostomid bats of lowland Amazonia: effects of habitat alteration on abundance. Biotropica 39, 737–746 (2007).

    Google Scholar 

  322. 322

    Winfree, R., Griswold, T. & Kremen, C. Effect of human disturbance on bee communities in a forested ecosystem. Conserv. Biol. 21, 213–223 (2007).

    PubMed  Google Scholar 

  323. 323

    Woinarski, J. C. Z. et al. Fauna assemblages in regrowth vegetation in tropical open forests of the Northern Territory, Australia. Wildl. Res. 36, 675–690 (2009).

    Google Scholar 

  324. 324

    Woodcock, B. A. et al. The potential of grass field margin management for enhancing beetle diversity in intensive livestock farms. J. Appl. Ecol. 44, 60–69 (2007).

    Google Scholar 

  325. 325

    Wunderle, J. M., Henriques, L. M. P. & Willig, M. R. Short-term responses of birds to forest gaps and understory: an assessment of reduced-impact logging in a lowland Amazon forest. Biotropica 38, 235–255 (2006).

    Google Scholar 

  326. 326

    Yoshikura, S., Yasui, S. & Kamijo, T. Comparative study of forest-dwelling bats’ abundances and species richness between old-growth forests and conifer plantations in Nikko National Park, central Japan. Mammal Study 36, 189–198 (2011).

    Google Scholar 

  327. 327

    Zaitsev, A. S., Chauvat, M., Pflug, A. & Wolters, V. Oribatid mite diversity and community dynamics in a spruce chronosequence. Soil Biol. Biochem. 34, 1919–1927 (2002).

    CAS  Google Scholar 

  328. 328

    Zaitsev, A. S., Wolters, V., Waldhardt, R. & Dauber, J. Long-term succession of oribatid mites after conversion of croplands to grasslands. Appl. Soil Ecol. 34, 230–239 (2006).

    Google Scholar 

  329. 329

    Zimmerman, G., Bell, F. W., Woodcock, J., Palmer, A. & Paloniemi, J. Response of breeding songbirds to vegetation management in conifer plantations established in boreal mixedwoods. For. Chron. 87, 217–224 (2011).

    Google Scholar 

  330. 330

    Roskov, Y. et al. Species 2000 & ITIS Catalogue of Life, 2013 Annual Checklist. http://catalogueoflife.org/annual-checklist/2013/ (2013).

  331. 331

    Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391 (2001).

    Google Scholar 

  332. 332

    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).

    Google Scholar 

  333. 333

    Kattge, J. et al. TRY – a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011).

    ADS  Google Scholar 

  334. 334

    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).

    Google Scholar 

  335. 335

    Cooper, N., Bielby, J., Thomas, G. H. & Purvis, A. Macroecology and extinction risk correlates of frogs. Glob. Ecol. Biogeogr. 17, 211–221 (2008).

    Google Scholar 

  336. 336

    AmphibiaWeb. http://amphibiaweb.org/ (2013).

  337. 337

    Sunyer, J., Páiz, G., Dehling, D. M. & Köhler, G. A collection of amphibians from Río San Juan, southeastern Nicaragua. Herpetol. Notes 2, 189–202 (2009).

    Google Scholar 

  338. 338

    Zug, G. R. & Zug, P. B. The marine toad Bufo marinus: a natural history resumé of native populations. Smithson. Contrib. Zool. 284, 1–58 (1979).

    Google Scholar 

  339. 339

    Amphibians & Reptiles of Peninsular Malaysia. http://www.amphibia.my/ (2009).

  340. 340

    Shahriza, S., Ibrahim, H. J. & Shahrul Anuar, M. S. The correlation between total rainfall and breeding parameters of white-lipped frog, Rana labialis (Anura: Ranidae) in Kedah, Malaysia. Trop. Nat. Hist. 10, 131–139 (2010).

    Google Scholar 

  341. 341

    Bain, R. H. & Quang Truong, N. Three new species of narrow-mouth frogs (genus: Microhyla) from Indochina, with comments on Microhyla annamensis and Microhyla palmipes . Copeia 2004, 507–524 (2004).

    Google Scholar 

  342. 342

    Su, M.-Y., Kam, Y.-C. & Fellers, G. M. Effectiveness of amphibian monitoring techniques in a Taiwanese subtropical forest. Herpetol. J. 15, 73–79 (2005).

    Google Scholar 

  343. 343

    Matson, T. O. A morphometric comparison of gray treefrogs, Hyla chrysoscelis and H. versicolor, from Ohio. Ohio J. Sci. 90, 98–101 (1990).

    Google Scholar 

  344. 344

    Ningombam, B. & Bordoloi, S. Amphibian fauna of Loktak Lake, Manipur, India with ten new records for the state. Zoos Print J. 22, 2688–2690 (2007).

    Google Scholar 

  345. 345

    Lance, S. L. & Wells, K. D. Are spring peeper satellite males physiologically inferior to calling males?. Copeia 1993, 1162–1166 (1993).

    Google Scholar 

  346. 346

    Da Silva, E. T., Dos Reis, E. P., Feio, R. N. & Filho, O. P. R. Diet of the invasive frog Lithobates catesbeianus (Shaw, 1802) (Anura: Ranidae) in Viçosa, Minas Gerais State, Brazil. South Am. J. Herpetol. 4, 286–294 (2009).

    Google Scholar 

  347. 347

    Blomquist, S. M. & Hunter, M. L., Jr A multi-scale assessment of habitat selection and movement patterns by northern leopard frogs (Lithobates [Rana] pipiens) in a managed forest. Herpetol. Conserv. Biol. 4, 142–160 (2009).

    Google Scholar 

  348. 348

    Caramaschi, U. & da Cruz, C. A. G. Redescription of Chiasmocleis albopunctata (Boettger) and description of a new species of Chiasmocleis (Anura: Microhylidae). Herpetologica 53, 259–268 (1997).

    Google Scholar 

  349. 349

    Brasileiro, C. A., Sawaya, R. J., Kiefer, M. C. & Martins, M. Amphibians of an open cerrado fragment in southeastern Brazil. Biota Neotrop. 5, BN00405022005 (2005).

    Google Scholar 

  350. 350

    De Almeida Prado, C. P. Estratégias reprodutivas em uma comunidade de anuros no pantanal, estado de Mato Grosso do Sul, Brasil. PhD thesis, Universidade Estadual Paulista, 2003.

  351. 351

    De Almeida Prado, C. P., Uetanabaro, M. & Lopes, F. S. Reproductive strategies of Leptodactylus chaquensis and L. podicipinus in the Pantanal, Brazil. J. Herpetol. 34, 135–139 (2000).

    Google Scholar 

  352. 352

    De Carvalho, T. R., Giaretta, A. A. & Facure, K. G. A new species of Hypsiboas Wagler (Anura: Hylidae) closely related to H. multifasciatus Günther from southeastern Brazil. Zootaxa 2521, 37–52 (2010).

    Google Scholar 

  353. 353

    Heyer, W. R. & Heyer, M. M. Leptodactylus elenae Heyer. Cat. Am. Amphib. Reptil. 742, 1–5 (2002).

    Google Scholar 

  354. 354

    Heyer, W. R. Variation within the Leptodactylus podicipinus-wagneri complex of frogs (Amphibia: Leptodactylidae). Smithson. Contrib. Zool. 546, (1994).

  355. 355

    Jungfer, K.-H. & Hödl, W. A new species of Osteocephalus from Ecuador and a redescription of O. leprieurii (Dumeril & Bibron, 1841) (Anura: Hylidae). Amphibia–Reptilia 23, 21–46 (2002).

    Google Scholar 

  356. 356

    Fouquet, A., Gaucher, P., Blanc, M. & Velez-Rodriguez, C. M. Description of two new species of Rhinella (Anura: Bufonidae) from the lowlands of the Guiana shield. Zootaxa 1663, 17–32 (2007).

    Google Scholar 

  357. 357

    Lynch, J. D. A review of the leptodactylid frogs of the genus Pseudopaludicola in Northern South America. Copeia 1989, 577–588 (1989).

    Google Scholar 

  358. 358

    González, C. E. & Hamann, M. I. Nematode parasites of two anuran species Rhinella schneideri (Bufonidae) and Scinax acuminatus (Hylidae) from Corrientes, Argentina. Rev. Biol. Trop. 56, 2147–2161 (2008).

    PubMed  Google Scholar 

  359. 359

    Pombal, J. P., Jr, Bilate, M., Gambale, P. G., Signorelli, L. & Bastos, R. P. A new miniature treefrog of the Scinax ruber clade from the cerrado of central Brazil (Anura: Hylidae). Herpetologica 67, 288–299 (2011).

    Google Scholar 

  360. 360

    Ibáñez, R., Jaramillo, C. A. & Solis, F. A. Description of the advertisement call of a species without vocal sac: Craugastor gollmeri (Amphibia: Craugastoridae). Zootaxa 3184, 67–68 (2012).

    Google Scholar 

  361. 361

    Hertz, A., Hauenschild, F., Lotzkat, S. & Köhler, G. A new golden frog species of the genus Diasporus (Amphibia, Eleutherodactylidae) from the Cordillera Central, western Panama. Zookeys 196, 23–46 (2012).

    Google Scholar 

  362. 362

    Goldberg, S. R. & Bursey, C. R. Helminths from fifteen species of frogs (Anura, Hylidae) from Costa Rica. Phyllomedusa 7, 25–33 (2008).

    Google Scholar 

  363. 363

    Bennett, W. O., Summers, A. P. & Brainerd, E. L. Confirmation of the passive exhalation hypothesis for a terrestrial caecilian, Dermophis mexicanus. Copeia 1999, 206–209 (1999).

    Google Scholar 

  364. 364

    Anderson, M. T. & Mathis, A. Diets of two sympatric Neotropical salamanders, Bolitoglossa mexicana and B. rufescens, with notes on reproduction for B. rufescens. J. Herpetol. 33, 601–607 (1999).

    Google Scholar 

  365. 365

    McCranie, J. R. & Wilson, L. D. Taxonomic changes associated with the names Hyla spinipollex Schmidt and Ptychohyla merazi Wilson and McCranie (Anura: Hylidae). Southwest. Nat. 38, 100–104 (1993).

    Google Scholar 

  366. 366

    Barrio-Amorós, C. L., Guayasamin, J. M. & Hedges, S. B. A new minute Andean Pristimantis (Anura: Strabomantidae) from Venezuela. Phyllomedusa 11, 83–93 (2012).

    Google Scholar 

  367. 367

    Arroyo, S. B., Serrano-Cardozo, V. H. & Ramírez-Pinilla, M. P. Diet, microhabitat and time of activity in a Pristimantis (Anura, Strabomantidae) assemblage. Phyllomedusa 7, 109–119 (2008).

    Google Scholar 

  368. 368

    Savage, J. M. & Myers, C. Frogs of the Eleutherodactylus biporcatus group (Leptodactylidae) of Central America and northern South America, including rediscovered, resurrected, and new taxa. Am. Mus. Novit. 3357, 1–48 (2002).

    Google Scholar 

  369. 369

    Simóes, P. I. Diversificação do complexo Allobates femoralis (Anura, Dendrobatidae) em florestas da Amazônia brasileira: desvendando padrões atuais e históricos. PhD thesis, Instituto Nacional de Pesquisas da Amazônia, 2010.

  370. 370

    Guayasamin, J. M., Ron, S. R., Cisneros-Heredia, D. F., Lamar, W. & McCracken, S. F. A new species of frog of the Eleutherodactylus lacrimosus assemblage (Leptodactylidae) from the western Amazon Basin, with comments on the utility of canopy surveys in lowland rainforest. Herpetologica 62, 191–202 (2006).

    Google Scholar 

  371. 371

    Jared, C., Antoniazzi, M. M., Verdade, V. K. & Toledo, L. F. The Amazonian toad Rhaebo guttatus is able to voluntarily squirt poison from the paratoid macroglands. Amphibia–Reptilia 32, 546–549 (2011).

    Google Scholar 

  372. 372

    Wollenberg, K. C., Veith, M., Noonan, B. P. & Lötters, S. Polymorphism versus species richness—systematics of large Dendrobates from the eastern Guiana Shield (Amphibia: Dendrobatidae). Copeia 2006, 623–629 (2006).

    Google Scholar 

  373. 373

    Shepard, D. B. & Caldwell, J. P. From foam to free-living: ecology of larval Leptodactylus labyrinthicus. Copeia 2005, 803–811 (2005).

    Google Scholar 

  374. 374

    Heyer, W. R., García-Lopez, J. M. & Cardoso, A. J. Advertisement call variation in the Leptodactylus mystaceus species complex (Amphibia: Leptodactylidae) with a description of a new sibling species. Amphibia–Reptilia 17, 7–31 (1996).

    Google Scholar 

  375. 375

    Zimmermann, B. L. A comparison of structural features of calls of open and forest habitat frog species in the central Amazon. Herpetologica 39, 235–246 (1983).

    Google Scholar 

  376. 376

    Bernarde, P. S. & Kokubum, M. N. D. C. Seasonality, age structure and reproduction of Leptodactylus (Lithodytes) lineatus (Anura, Leptodactylidae) in Rondônia state, southwestern Amazon, Brazil. Iheringia Série Zool. 99, 368–372 (2009).

    Google Scholar 

  377. 377

    Campbell, J. A. & Clarke, B. T. A review of frogs of the genus Otophryne (Microhylidae) with the description of a new species. Herpetologica 54, 301–317 (1998).

    Google Scholar 

  378. 378

    Kan, F. W. Population dynamics, diet and morphological variation of the Hong Kong newt (Paramesotriton hongkongensis). MPhil thesis, The University of Hong Kong, 2010.

  379. 379

    Stuart, B. L., Chuaynkern, Y., Chan-ard, T. & Inger, R. F. Three new species of frogs and a new tadpole from eastern Thailand. Fieldiana Zool. New Ser. 111, 1–19 (2006).

    Google Scholar 

  380. 380

    Ao, J. M., Bordoloi, S. & Ohler, A. Amphibian fauna of Nagaland with nineteen new records from the state including five new records for India. Zoos Print J. 18, 1117–1125 (2003).

    Google Scholar 

  381. 381

    Ohler, A. et al. Sorting out Lalos: description of new species and additional taxonomic data on megophryid frogs from northern Indochina (genus Leptolalax, Megophryidae, Anura). Zootaxa 3147, 1–83 (2011).

    Google Scholar 

  382. 382

    Meiri, S. Evolution and ecology of lizard body sizes. Glob. Ecol. Biogeogr. 17, 724–734 (2008).

    Google Scholar 

  383. 383

    Itescu, Y., Karraker, N. E., Raia, P., Pritchard, P. C. H. & Meiri, S. Is the island rule general? Turtles disagree. Glob. Ecol. Biogeogr. 23, 689–700 (2014).

    Google Scholar 

  384. 384

    Meiri, S. Length-weight allometries in lizards. J. Zool. (Lond.) 281, 218–226 (2010).

    Google Scholar 

  385. 385

    Feldman, A. & Meiri, S. Length-mass allometry in snakes. Biol. J. Linn. Soc. 108, 161–172 (2013).

    Google Scholar 

  386. 386

    Edgar, M. What can we learn from body length? A study in Coleoptera. MRes thesis, Imperial College London, 2014.

  387. 387

    Gilbert, F., Rotheray, G. E., Zafar, R. & Emerson, P. in Phylogenetics Ecol. 324–343 Academic Press (1994).

  388. 388

    ESRI. ArcGIS Desktop: Release 10. (Environmental Systems Research Institute, 2011).

  389. 389

    Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Google Scholar 

  390. 390

    R Core Team. R: A Language and Environment for Statistical Computing. http://www.r-project.org. (R Foundation for Statistical Computing, 2013).

  391. 391

    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R. (Springer 2009).

  392. 392

    Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).

    MathSciNet  MATH  Google Scholar 

  393. 393

    Bivand, R. spdep: spatial dependence: weighting schemes, statistics and models. R Package Version 0.5-68. http://cran.r-project.org/web/packages/spdep (2013).

  394. 394

    Møller, A. P. & Jennions, M. D. Testing and adjusting for publication bias. Trends Ecol. Evol. 16, 580–586 (2001).

    Google Scholar 

  395. 395

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    ADS  Google Scholar 

  396. 396

    United Nations Population Division. World Population Prospects: The 2010 Revision Population Database. http://www.un.org/esa/population/ (2011).

  397. 397

    van Asselen, S. & Verburg, P. H. Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Glob. Chang. Biol. 19, 3648–3667 (2013).

    ADS  PubMed  Google Scholar 

  398. 398

    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    ADS  CAS  PubMed  Google Scholar 

  399. 399

    Hijmans, R. J. raster: Geographic data analysis and modeling. http://cran.r-project.org/package=raster (2014).

  400. 400

    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001).

    Google Scholar 

Download references

Acknowledgements

We thank all the many researchers who have made their data available to us; S. Butchart and Birdlife International for sharing bird body-size data; F. Gilbert for hoverfly body-size data; the IMAGE, HYDE, MESSAGE and MiniCAM teams, especially R. Alkemade, M. Bakkenes and A. Thomson for sharing additional data from their integrated assessment models; D. Tittensor for statistical advice; C. Sleep and S. Patlola at the Natural History Museum in London for IT support with the database; members of the GARD initiative (http://www.gardinitiative.org/index.html) for help with estimating the reptile species richness map; K. Jones, J. Tylianakis, M. Crawley and E. J. Milner-Gulland for discussion, N. Burgess for comments on a draft of the paper. We also thank C. D. Thomas and two anonymous reviewers for very helpful comments on the manuscript. This study is part of the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) project, which is supported by the UK Natural Environment Research Council (NERC, grant number: NE/J011193/1), the Biotechnology and Biological Sciences Research Council (grant number: BB/F017324/1) a Hans Rausing PhD scholarship. The study was also supported by the TRY initiative on plant traits, whose database is maintained at Max-Planck-Institute for Biogeochemistry, Jena, Germany, and which is supported by DIVERSITAS, IGBP, the Global Land Project, NERC, the French Foundation for Biodiversity Research, and GIS ‘Climat, Environnement et Société’ France. This is a contribution from the Imperial College Grand Challenges in Ecosystem and the Environment Initiative.

Author information

Affiliations

Authors

Contributions

T.N., L.N.H., S.L.L.H., S.C., I.L., B.C., D.W.P., R.M.E., G.M.M., J.P.W.S. and A.P. designed the project and this study; T.N., L.N.H., I.L., R.A.S., L.B., J.P.W.S. and A.P. performed the analyses; T.N., L.N.H., S.L.L.H., S.C., D.J.B., A.C., B.C., J.D., A.D.P., S.E.-L., M.G., M.L.K.H., T.A., D.J.I., V.K., L.K., D.L.P.C., C.D.M., Y.P., H.R.P.P., A.R., J.S., H.J.W. and A.P. collated the assemblage composition data; T.N., L.N.H., S.L.L.H., S.C., A.D.P., I.L., H.R.P.P., J.P.W.S. and A.P. designed the data-collection protocols and database; R.A.S., S.D., M.J.E., A.F., Y.I., J.K., M.K., S.M. and E.W. made substantial contributions to the trait data used in the analyses and S.L.T. to the site-level environmental data; R.A.S., A.F., Y.I., S.M., and M.N. generated the maps of species richness used in the model projections; T.N., L.N.H. and A.P. wrote the manuscript with contributions from G.M.M., L.B., D.W.P., R.M.E., A.D.P., H.R.P.P., S.L.L.H., R.A.S., B.C., S.D., A.F., Y.I., J.K., M.K., S.M., J.P.W.S and S.L.T.; T.N. and L.N.H. contributed equally to the study.

Corresponding author

Correspondence to Tim Newbold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Taxonomic and geographic representativeness of the data set used.

a, The relationship between the number of species represented in our data with the number estimated to have been described17 for 47 major taxonomic groups. Lines show (from bottom to top) 0.1%, 1% and 10% representation of described species in our data set; magenta, invertebrates; red, vertebrates; green, plants; blue, fungi; and grey, all other taxonomic groups. b, The relationship across biomes400 between the percentage of global net primary production and the number of sites in our data set; A, tundra; B, boreal forests and taiga; C, temperate conifer forests; D, temperate broadleaf and mixed forests; E, montane grasslands and shrublands; F, temperate grasslands, savannahs and shrublands; G, Mediterranean forests, woodlands and scrub; H, deserts and xeric shrublands; J, tropical and subtropical grasslands, savannahs and shrublands; K, tropical and subtropical coniferous forests; M, tropical and subtropical dry broadleaf forests; N, tropical and subtropical moist broadleaf forests; P, mangroves; note that the flooded grasslands and savannah biome is not represented in the data set; grey line shows a 1:1 relationship.

Extended Data Figure 2 Detailed response of local diversity to human pressures.

ai, Modelled effects (controlling for land use) of human population density (HPD), distance to nearest road, time since 30% conversion of a landscape to human uses (TSC) and time to nearest population centre with greater than 50,000 inhabitants (ad), interactions between pairs of these variables (e), and interactions between these variables and land use (fi) on site-level diversity. ac, f, g, Within-sample species richness; e, h, i, total abundance; and d, community-weighted mean vertebrate body mass. Shaded polygons in ad show 95% confidence intervals. For clarity, shaded polygons in fi are shown as ±0.5 × s.e.m. Confidence intervals in e are omitted. Rugs along the x axes in the line graphs show the values of the explanatory variables represented in the data set used for modelling. Only significant effects are shown. Note that distance to nearest road and travel time to major population centre measures are the raw (log-transformed) values fitted in the models rather than the proximity to roads and accessibility values (obtained as 1 minus the former values) presented in Fig. 1. Sample sizes are given in full in the Methods.

Extended Data Figure 3 Robustness of modelled effects of human pressures.

a, Effects of land use and land-use intensity on rarefaction-based species richness. b, To test that any differences between these results and the results for within-sample species richness presented in the main manuscript were not because rarefied species richness could only be calculated with a smaller data set, we also show modelled effects on within-sample species richness with the same reduced data set. cd, Cross-validated robustness of coefficient estimates for land use and land-use intensity. Crosses show 95% confidence intervals around the coefficient estimates under tenfold cross-validation, excluding data from approximately 10% of studies at a time (c), and under geographical cross-validation, excluding data from one biome at a time (d); colours, points, error bars and land-use labels are as in Fig. 1 in the main text. Primary, primary vegetation; YSV, young secondary vegetation; ISV, intermediate secondary vegetation; MSV, mature secondary vegetation; plantation, plantation forest. Sample sizes are given in full in the Methods.

Extended Data Figure 4 Tests of the potential for publication bias to influence the richness models and projections.

Left-hand panels (a, d, g, j, m) show funnel plots of the relationship between the standard error around coefficient estimates (inversely related to the size of studies) and the coefficient estimates themselves for each coarse land-use type; there is evidence for publication bias with respect to some of the land-use types, as indicated by an absence of points on one or other side of zero for studies with large standard errors (but note that small studies are down-weighted in the model). Red points show studies with more than five sites in the land use in question (ten for secondary vegetation and plantation forest because there were more sites for these land uses and some studies with between five and ten sites showed variable responses); horizontal dashed lines show the modelled coefficients for each land use. Central panels (b, e, h, k, n) show the relationship between study size (log-transformed total number of sites) and the random slope of the land use in question with respect to study identity, from a random-slopes-and-intercepts model. Where a significant relationship was detected using a linear model, fitted values and 95% confidence intervals are shown as a red dashed line and red dotted lines, respectively. Conversely to what would be expected if publication bias was present, where significant relationships between study size and random slopes were detected, these were negative (that is, larger studies detected more negative effects). Right-hand panels (c, f, i, l, o) show the robustness of modelled coefficients to removal of studies with few sites in a given land use (black points in the left-hand panels). Left-hand error bars show coefficient estimates for all studies and right-hand error bars show coefficient estimates for studies with more than five sites in that land use (ten for secondary vegetation and plantation forest).

Extended Data Figure 5 Tests for spatial autocorrelation in the model residuals.

ad, For the four main modelled metrics of site-level diversity—within-sample species richness (a), total abundance (b), community-weighted mean plant-height (c) and community-weighted mean animal mass (d)—histograms of P values from sets of Moran's tests for spatial autocorrelation in the residuals of the best models for individual studies are shown. The percentage of studies with significant spatial autocorrelation (P < 0.05; indicated by a vertical red line) is shown.

Extended Data Figure 6 Current, past and future projections of all metrics of local biodiversity.

ad, Net change in local diversity caused by land use and related pressures by 2000 under an IMAGE reference scenario10. Changes in richness (a), rarefied richness (b), total abundance (c) and community-weighted mean plant height (d) are shown. Note that the values used to divide the colours are the same in all panels, but that the maximum and minimum values are different, as indicated in the legends. eg, Historical and future estimates of net change in local diversity from 1500–2095, based on estimates of land-use, land-use intensity and human population density from the four RCP scenarios (Table 1). Net changes in richness (e), total abundance (f) and community-weighted mean plant height (g) are shown. Historical (shading) and future (error bars) uncertainty shown as 95% confidence intervals, with uncertainty rescaled to be zero in 2005 to show uncertainty in past and future change separately. The global average projection for the MESSAGE scenario does not directly join the historical reconstruction because projections start in 2010 (human population estimates are available at 15-year intervals) and because human population (and thus land-use intensity) and plantation forest extent have not been harmonized among scenarios. In panel e, the dashed line shows projected diversity change under land-use change only (that is, without land-use intensity and human population density, the projections of which involved simplifying assumptions), and the dotted line shows projections of rarefaction-based species richness.

Extended Data Figure 7 Reconstructed and projected total global land-use areas under the RCP scenarios.

a, Estimated total area of the major land-use types. bf, estimated total area of secondary vegetation in different stages of recovery.

Extended Data Figure 8 Biodiversity projections at the country level.

ad, Country-level projections of net change in local richness between 2005 and 2095 under the four RCP scenarios (IMAGE 2.6 (a), MiniCAM 4.5 (b), AIM 6.0 (c) and MESSAGE 8.5 (d)), shown in relation to the Human Development Index (an indicator of education, life expectancy, wealth and standard of living) in the most recent year for which data are available. e, f, Country-level projections of net change in local richness between 2005 and 2095 under the best- and worst-performing RCP scenarios in terms of biodiversity (MiniCAM 4.5 (e) and MESSAGE 8.5 (f), respectively), shown in relation to past change in biodiversity from a baseline with no human land-use effects to 2005 according to the HYDE land-use reconstruction. Colours indicate biogeographic realms (key in b); colour intensity reflects native vertebrate species richness (more intense colour represents higher species richness); point size is proportional to (log) country area.

Extended Data Table 1 Land use and land-use intensity classification definitions (from ref. 16)
Extended Data Table 2 Conversion between Global Land Systems data set and our intensity classification for each major land-use type.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary Table 1. (PDF 213 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Newbold, T., Hudson, L., Hill, S. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015). https://doi.org/10.1038/nature14324

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing