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            Abstract
Disruption of the MECP2 gene leads to Rett syndrome (RTT), a severe neurological disorder with features of autism1. MECP2 encodes a methyl-DNA-binding protein2 that has been proposed to function as a transcriptional repressor, but despite numerous mouse studies examining neuronal gene expression in Mecp2 mutants, no clear model has emerged for how MeCP2 protein regulates transcription3,4,5,6,7,8,9. Here we identify a genome-wide length-dependent increase in gene expression in MeCP2 mutant mouse models and human RTT brains. We present evidence that MeCP2 represses gene expression by binding to methylated CA sites within long genes, and that in neurons lacking MeCP2, decreasing the expression of long genes attenuates RTT-associated cellular deficits. In addition, we find that long genes as a population are enriched for neuronal functions and selectively expressed in the brain. These findings suggest that mutations in MeCP2 may cause neurological dysfunction by specifically disrupting long gene expression in the brain.
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                    Figure 1: Length-dependent gene misregulation in Mecp2 mutant mice and human RTT brain.[image: ]


Figure 2: MeCP2 represses long genes containing high levels of mCA.[image: ]


Figure 3: Disruption of Dnmt3a in the brain leads to length-dependent upregulation of genes containing high levels of mCA.[image: ]


Figure 4: Analysis of long gene expression and regulation in the brain.[image: ]
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Extended data figures and tables

Extended Data Figure 1 Analysis of gene expression changes in Mecp2 mutant mice.
a, Heatmap of median gene lengths for genes identified as misregulated in Mecp2 mutant studies or sixteen different studies of neurological dysfunction and disease in mice. Mouse model and GEO accession number, or reference, are listed (for Strand et al. (1), 3NP treatment; (2), human HD brain; (3), R2/6 Htt transgenic). b, Scatter plots of fold-change in gene expression in the MeCP2 KO for the amygdala (left), which shows robust length-dependent misregulation, and the liver (right), which does not. Fold-change values for genes (black points) and mean fold-change for 200 genes per bin with a 40 gene step are shown (mean, red line; ribbon, s.e.m.). c, The fraction of genes showing fold-change >0 for data sets in b; genes binned by length (100 gene bins, 50 gene step). dâ€“f, Analysis of published microarray5,6,7,8,9 (d, e) or RNA sequencing (RNA-seq)18 (f) data sets from MeCP2 KO (d, f) or OE (e) mice. Mean fold-change in expression (200 gene bins, 40 gene step), red line; ribbon, s.e.m. For dâ€“f, mean (black line) and two standard deviations (grey ribbon) are shown for 10,000 resamplings in which gene lengths were randomized with respect to fold-change. The spike in mean fold-change at âˆ¼1 kb in several plots corresponds to the olfactory receptor genes (Supplementary Discussion). g, Mean changes in expression of genes binned by length from RNA-seq analysis of MeCP2 KO cortex (n = 3 per genotype). h, Mean changes in expression from microarray analysis of genes binned by length in MeCP2(R306C) cerebellum (n = 4 per genotype) i, Heatmap summary of fold-changes in gene expression from RNA-seq analysis of Mecp2 mutant mean in g compared to Nanostring nCounter (18 genes, top) or RT-qPCR (17 genes, bottom) analysis from cortex (n = 4 per genotype). Selected long genes (>100 kb) consistently upregulated in the MeCP2 KO or downregulated in MeCP2 OE mutant mice across brain tissues were tested (Supplementary Table 2). A statistically significant upregulation of these genes is observed in the cortex for both MeCP2 KO (nCounter, P = 0.00073; qPCR, P < 1 Ã— 10âˆ’15) and MeCP2(R306C) (nCounter, P = 0.0482 ; qPCR, P = 1.69 Ã— 10âˆ’6; Hotelling T2 test for small sample size37). Note that for completeness, data from other figures have been re-presented here. See Methods and Supplementary Table 1 for sample sizes from published data sets and other details.


Extended Data Figure 2 Timing and severity of gene expression changes in models of RTT.
a, Mean fold-change in gene expression versus gene length in the hippocampus of MeCP2 KO mice compared to wild type at four and nine weeks of age reveals increasing magnitude of length-dependent gene misregulation that parallels the onset of RTT-like symptoms in these animals8. b, Mean fold-change in gene expression versus gene length in hippocampus of mice expressing truncated forms of MeCP2 mimicking human disease-causing alleles at four weeks of age. Re-expression of a longer truncated form of MeCP2(G273X) in the MeCP2 KO normalizes expression of long genes more effectively than expression of a shorter truncation of MeCP2(R270X), and parallels the higher degree of phenotypic rescue observed in MeCP2(G273X)-expressing mice compared to MeCP2(R270X)-expressing mice8. c, Mean fold-change in gene expression versus gene length in hippocampus of mice expressing truncated MeCP2 at nine weeks of age. Consistent with the eventual onset of symptoms of these mouse strains, length-dependent gene misregulation is evident in both strains. d, Changes in gene expression for genes binned by length in human MECP2 null ES cells differentiated into neural progenitor cells, neurons cultured for 2 weeks, or neurons cultured for 4 weeks15. In all plots, lines represent mean fold-change in expression for each bin (200 gene bins, 40 gene step), and the ribbon is s.e.m. of genes within each bin. See Methods and Supplementary Table 1 for all sample sizes and other details.


Extended Data Figure 3 High affinity of MeCP2 for mCG, mCA and hmCA in electrophoretic mobility shift assays.
a, Binding of the recombinant methyl-binding domain (MBD) of MeCP2 (amino acids 81â€“170) to 32P-end-labelled oligonucleotides containing a methylated cytosine in a CA (left) or a CG (right) context competed with unlabelled competitor substituted with unmethylated, methylated, or hydroxymethylated cytosine in a CG or CA context (indicated in bold). Representative full gels showing shifted and unshifted probe in the presence of 50-fold excess of unlabelled competitor (top); close-up of shifted bands over a range of unlabelled competitor (bottom). A mCA-containing oligonucleotide competes for MeCP2 binding with equal or higher efficacy to that of a symmetrically methylated CG oligonucleotide. While hmCG-containing probes compete with similar efficacy to an unmethylated probe, a hmCA-containing probe competes with high efficacy. This difference in affinity of MeCP2 for hmCA- and hmCG-containing probes may explain conflicting results reported for the affinity of MeCP2 for hydroxymethylated DNA18,50,51,52,53(Supplementary Discussion). b, Binding and competition of recombinant MeCP2 MBD (amino acids 78â€“162, left) or full-length MeCP2 (amino acids 1â€“486, right) incubated with 32P-end-labelled oligonucleotides containing a methylated cytosine in a CA context and competed with oligonucleotides containing unmethylated, methylated, or hydroxymethylated cytosine in a CG, CA, CT, or CC context. Representative full gels showing 100-fold excess of unlabelled competitor (top); close-up of shifted bands over a range of unlabelled competitor (bottom). The results obtained from competitors containing mCG, mCA, hmCG and hmCA are similar to those shown in a. In addition, both (h)mCT- and (h)mCC-containing oligonucleotides compete for MeCP2 binding with similar efficacy to that of an unmethylated probe. All results shown were observed in at least two independent experiments.


Extended Data Figure 4 ChIP-seq analysis of MeCP2 binding in vivo.
a, Boxplots of input-normalized read density within gene bodies (TSS +3 kb to TTS) for MeCP2 ChIP from the mouse frontal cortex plotted for genes according to quartile of mCA/CA, mCG/CG, hmCA/CA and hmCG/CG in the frontal cortex24 for all genes and genes >100 kb. b, Similar analysis of MeCP2 ChIP from the mouse cortex (left) or cerebellum (right) plotted for genes according to quartile of mCA/CA or mCG/CG for all genes and genes > 100 kb. MeCP2 ChIP-signal is correlated with mCA/CA levels from the frontal cortex, cortex, and cerebellum for all genes and this correlation is more prominent among genes >100 kb. mCG does not show as prominent a correlation with MeCP2 ChIP signal, and hmCG trends towards anti-correlation with MeCP2 ChIP. These results suggest that MeCP2 has a lower affinity for hmCG than mCG, suggesting that, in vivo, hmCG is associated with reduced MeCP2 occupancy (Supplementary Discussion). c, High resolution analysis of high-coverage bisulfite sequencing data from the frontal cortex showing a correlation between MeCP2 ChIP signal and mCA. Input-normalized ChIP signal plotted for mCA levels for 500-bp bins tiled across all genes. d, Aggregate plots of MeCP2 input-normalized ChIP signal (top) and relative methylation (log2 enrichment in mC as compared to the flanking regions) for mCA, mCC, mCT, and mCG (bottom) are plotted around the 31,479 summits of MeCP2 ChIP enrichment identified using the MACS peak-calling algorithm40 (red) or 31,479 randomly selected control sites (grey, see Methods). See Methods and Supplementary Table 1 for sample sizes and other details.


Extended Data Figure 5 Genomic analysis of mCG, hmCG, and hmCA in length-dependent gene regulation by MeCP2.
aâ€“c, Mean methylation of CG dinucleotides (mCG/CG) within gene bodies (transcription start site +3 kb, up to transcription termination site) in the cortex (a), hippocampus (b) and cerebellum (c) for genes binned according to length. dâ€“f, Mean fold-change in gene expression in MeCP2 KO compared to wild type in the cortex (d), hippocampus (e), and cerebellum (f) for genes binned according to mCG levels (mCG/CG) within gene bodies. g, Mean hmCG levels (hmCG/CG) within gene bodies in the frontal cortex24 for genes binned according to length. h, Mean fold-change in gene expression in MeCP2 KO compared to wild type for genes binned according to hmCG levels (hmCG/CG) within gene bodies in the frontal cortex24 i, Mean hmCA levels (hmCA/CA) within gene bodies in the frontal cortex24 for genes binned according to length. j, Mean fold-change in gene expression in MeCP2 KO compared to wild type genes binned according to hmCA levels (hmCA/CA) within gene bodies in the frontal cortex24. In all panels, mean values for each bin are indicated as a line (200 gene bins, 40 gene step); ribbon depicts s.e.m. for genes within each bin. See Methods and Supplementary Table 1 for sample sizes and other details.


Extended Data Figure 6 Genomic analysis supports a role for mCA in length-dependent gene regulation by MeCP2.
aâ€“c, Mean methylation at CA dinucleotides (mCA/CA) within gene bodies (TSS +3 kb to TTS) in cortex (a), hippocampus (b), and cerebellum (c) for genes binned by length. dâ€“f, Mean changes in gene expression in cortex (d), hippocampus (e), and cerebellum (f) of MeCP2 KO for high mCA genes (top 25% mean gene body mCA/CA) and low mCA genes (bottom 66% mean gene body mCA/CA) binned by length. gâ€“i, Mean changes in gene expression in cortex (g), hippocampus (h), and cerebellum (i) of MeCP2 KO for genes binned according to average gene body mCA/CA levels. jâ€“l, Mean changes in gene expression in cortex (j), hippocampus (k), and cerebellum (l) of MeCP2 KO mice for long genes (top 25%) and short genes (bottom 25%) in each brain region binned by gene body mCA/CA level. A correlation between fold-change in the MeCP2 KO and mCA/CA for all genes is less prominent, or not observed, in the hippocampus and cerebellum for all genes together (h, i), but it is clear for the longest genes in the genome analysed alone (k, l). Note that average levels of mCA appear lower in hippocampus and cerebellum compared to cortex (compare y axis in a, b and c), and may explain why a correlation across all genes in not detected in these brain regions. In long genes analysed alone the cumulative effect of higher mCA levels and integration across the gene may be larger, resulting in a detectable effect. In all panels, the line indicates the mean for 200 gene bins, with a 40 gene step; ribbon depicts s.e.m. for genes within each bin. Note that, for completeness, data from analysis of the cortex presented in Fig. 2 are re-presented here. See Methods and Supplementary Table 1 for sample sizes and other details.


Extended Data Figure 7 Conditional knockout of Dnmt3a in vivo.
a, Diagram of the Dnmt3a locus and Cre-dependent conditional knockout strategy for Dnmt3a26. LoxP sites (green triangles) flank exon 17, which is removed following Cre-mediated recombination. Primers (purple arrows) were designed to flank exons 17 and 18. The wild-type (WT), floxed (FLX), and knockout (KO) allele are depicted. b, Representative PCR genotyping for tail DNA samples indicates presence or absence of the floxed (flx, âˆ¼800 bp), wild-type (WT, âˆ¼750 bp), and knockout (KO, âˆ¼500 bp) alleles. Separate genotyping reaction for the Nestin-cre transgene (âˆ¼250 bp) is shown. c, Efficient excision of the floxed exon is detected in cerebellar DNA from conditional knockout (Dnmt3aflx/flx; Nestin-Cre+/âˆ’, Dnmt3a cKO) mice but not from and control animals (Dnmt3aflx/flx, Control). d, Western blot analysis of Dnmt3a, MeCP2, and Gapdh (loading control) protein from the cerebellum of control and Dnmt3a cKO adult mice. All results shown were observed in at least two independent experiments.


Extended Data Figure 8 Analysis of MeCP2-repressed genes and FMRP target genes.
a, Mean fold-change in mRNA expression for examples of MeCP2-repressed genes across three different Mecp2 mutant genotypes (KO, OE, and R306C) and six brain regions. P values for each gene are derived from the mean z scores for fold-change across all data sets (see Methods). b, Gene expression and CA methylation data from the cerebellum for selected MeCP2-repressed genes from a (right), as well as examples of extremely long genes (>100 kb) that are not enriched for mCA and are not misregulated (left). Fold-changes in mRNA expression in Mecp2 mutants and the Dnmt3a cKO are shown (left axis), as well as mean mCA levels (grey; right axis). Red line indicates genomic median for gene body mCA/CA c, Boxplots of mCA levels in MeCP2-repressed genes compared to all genes. d, Mean fold-change for MeCP2-repressed genes in eight â€˜training data setsâ€™ used to define these genes (see Methods), and nine â€˜test data setsâ€™: three Mecp2 mutant data sets not used to define MeCP2-repressed genes (CTX MeCP2 KO and CB MeCP2(R306C), generated in this study; HC MeCP2 KO 4 week, analysed from Baker et al.8), and six data sets from brains of mouse models of neurological dysfunction generated using the same microarray platforms as the MeCP2 data sets (GEO accession numbers in order: GSE22115, GSE27088, GSE43051, GSE47706, GSE44855, GSE52584). Error bars are s.e.m. of MeCP2â€“repressed gene expression across samples (n = 4â€“8 microarrays per genotype per data set); P < 0.01, one-tailed t-test, Benjaminiâ€“Hochberg correction. Note that significance testing was not performed on training data sets. Brain regions indicated as in Fig. 1, (WB, whole brain). e, Cumulative distribution function (CDF) of gene lengths plotted exclusively for genes that are among the top 60% of expression levels in the brain (Supplementary Discussion). The extreme length of MeCP2-repressed genes and genes encoding FMRP target mRNAs29 when controlling for expression level indicates that the long length of these genesets is not a secondary effect of the preferential expression of long genes in the brain (P < 1 Ã— 10âˆ’15 for each geneset versus all expressed genes; two-sample Kolmogorovâ€“Smirnov test). f, The CDF of gene lengths for all genes compared to an independent set of FMRP targets identified by Brown and colleagues45 (P < 1 Ã— 10âˆ’15, Kolmogorovâ€“Smirnov-test). g, CDF of gene lengths for genes expressed at similar levels in the brain and other somatic tissues (Supplementary Discussion). The extreme length of each geneset (P < 1 Ã— 10âˆ’15, Kolmogorovâ€“Smirnov test) when filtering for genes that are expressed in all tissues indicates that regulation of long genes by MeCP2 and FMRP is not dependent on brain-specific expression. h, CDF of mature mRNA lengths for MeCP2-repressed genes, and FMRP target genes (P < 1 Ã— 10âˆ’11 for each geneset versus all genes, Kolmogorovâ€“Smirnov test). i, Overlap of MeCP2-repressed genes and putative FMRP target mRNAs29 (P < 5 Ã— 10âˆ’5, hypergeometric test). Expected overlap was calculated by dividing the expected overlap genome-wide (hypergeometric distribution) according to the distribution of all gene lengths in the genome. See Methods and Supplementary Table 1 for sample sizes and other details.


Extended Data Figure 9 Consequences of long gene misregulation in neurons.
a, Mean expression of genes binned according to length in human neural and non-neural tissues. Mean expression for genes within each bin (200 gene bins, 40 gene step) is indicated by the line; ribbon represents the s.e.m. of genes within each bin. b, Western blot analysis of MeCP2 from primary cortical neurons after control or MeCP2 shRNA knockdown (KD) and treatment with DMSO vehicle (âˆ’) or topotecan (+). c, Heatmap summary of nCounter analysis for the expression of selected MeCP2-repressed (MR) genes from primary neurons treated with control or MeCP2 shRNA and topotecan (n = 3â€“4). Normalized log2 fold-change relative to the DMSO-treated, control KD is shown. MeCP2 KD conditions are significantly different from control, (P = 1 Ã— 10âˆ’4, repeated measures ANOVA across 8 genes). Newmanâ€“Keuls corrected, post-hoc comparisons: P < 0.05 control KD, 0 nM drug versus MeCP2 KD, 0 nM drug; P > 0.05, control KD, 0 nM drug versus MeCP2 KD, 50 nM drug; P < 0.05 MeCP2 KD, 0 nM drug versus MeCP2 KD, 50 nM drug. d, Bioanalyzer profiles of 18S and 28S ribosomal RNA (top) and total RNA quantification (bottom) for treated neurons (n = 3â€“5). Total RNA values normalized to DMSO-treated control KD, red dashed line. Two-way repeated measures ANOVA indicates a significant effect of KD (P < 0.01) and drug treatment (P < 0.05). Rescue assessed by one-tailed t-test, Bonferroni multiple testing correction, P < 0.05.


Extended Data Table 1 Gene ontology analysis of MeCP2-repressed genes and genes >100 kbFull size table
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Role of MECP2 in Rett syndrome
Autism-related Rett syndrome is caused by disruption of the MECP2 gene, which codes for a methyl-DNA binding protein, but how MECP2 may control transcription of other genes has remained unclear. Now Michael Greenberg and colleagues show that disruption of the Mecp2 gene in a mouse model and in human Rett syndrome leads to preferential upregulation of longer genes, and that these often serve neuronal functions. Further data indicate that decreasing the expression of long genes, via hypomethylation of the dinucleotide CA, attenuates Rett-related dysfunctions in cultured neurons lacking MECP2.
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