We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies1,2,3,4,5,6,7,8 and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000–5,000 years ago. At the beginning of the Neolithic period in Europe, 8,000–7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a 24,000-year-old Siberian6. By 6,000–5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact 4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced 75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least 3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin9 of at least some of the Indo-European languages of Europe.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


Primary accessions

European Nucleotide Archive

Data deposits

The aligned sequences are available through the European Nucleotide Archive under accession number PRJEB8448. The Human Origins genotype dataset including ancient individuals can be found at (http://genetics.med.harvard.edu/reichlab/Reich_Lab/Datasets.html).


  1. 1.

    et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014)

  2. 2.

    et al. Genome flux and stasis in a five millennium transect of European prehistory. Nature Commun. 5, 5257 (2014)

  3. 3.

    et al. New insights into the Tyrolean Iceman’s origin and phenotype as inferred by whole-genome sequencing. Nature Commun. 3, 698 (2012)

  4. 4.

    et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014)

  5. 5.

    et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014)

  6. 6.

    et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014)

  7. 7.

    et al. Genomic structure in Europeans dating back at least 36,200 years. Science 346, 1113–1118 (2014)

  8. 8.

    et al. Genomic diversity and admixture differs for Stone-Age Scandinavian foragers and farmers. Science 344, 747–750 (2014)

  9. 9.

    The Horse, the Wheel, and Language: How Bronze-Age Riders from the Eurasian Steppes Shaped the Modern World (Princeton Univ. Press, 2007)

  10. 10.

    et al. DNA analysis of an early modern human from Tianyuan Cave, China. Proc. Natl Acad. Sci. USA 110, 2223–2227 (2013)

  11. 11.

    , , , & Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Phil. Trans. R. Soc. Lond. B 370, 20130624 (2015)

  12. 12.

    et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012)

  13. 13.

    et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013)

  14. 14.

    et al. Ancient DNA reveals key stages in the formation of central European mitochondrial genetic diversity. Science 342, 257–261 (2013)

  15. 15.

    et al. Ancient DNA reveals prehistoric gene-flow from Siberia in the complex human population history of North East Europe. PLoS Genet. 9, e1003296 (2013)

  16. 16.

    et al. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 38, e87 (2010)

  17. 17.

    et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007)

  18. 18.

    et al. A major Y-chromosome haplogroup R1b Holocene era founder effect in Central and Western Europe. Eur. J. Hum. Genet. 19, 95–101 (2011)

  19. 19.

    et al. The phylogenetic and geographic structure of Y-chromosome haplogroup R1a. Eur. J. Hum. Genet. 23, 124–131 (2015)

  20. 20.

    et al. Origins and genetic legacy of Neolithic farmers and hunter-gatherers in Europe. Science 336, 466–469 (2012)

  21. 21.

    in Ancient Europe, 8000 B.C. to A.D. 1000: Encyclopedia of the Barbarian World (eds & ) 467–475 (Charles Scribners & Sons, 2003)

  22. 22.

    et al. Efficient moment-based inference of admixture parameters and sources of gene flow. Mol. Biol. Evol. 30, 1788–1802 (2013)

  23. 23.

    et al. Tracing the genetic origin of Europe’s first farmers reveals insights into their social organization. Preprint at bioRxiv (2014)

  24. 24.

    et al. Ancient DNA from European early Neolithic farmers reveals their Near Eastern affinities. PLoS Biol. 8, e1000536 (2010)

  25. 25.

    et al. A genetic atlas of human admixture history. Science 343, 747–751 (2014)

  26. 26.

    & The geography of recent genetic ancestry across Europe. PLoS Biol. 11, e1001555 (2013)

  27. 27.

    Archaeology and Language: The Puzzle of Indo-European Origins (Pimlico, 1987)

  28. 28.

    First Farmers: The Origins of Agricultural Societies (Wiley-Blackwell, 2004)

  29. 29.

    & The early history of Indo-European languages. Sci. Am. 262, 110–116 (1990)

  30. 30.

    In Search of the Indo-Europeans: Language, Archaeology and Myth (Thames and Hudson, 1991)

  31. 31.

    , & Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 40, e3 (2012)

  32. 32.

    et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406 (2014)

  33. 33.

    , , , & Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Phil. Trans. R. Soc. Lond. B 370, 20130624 (2015)

  34. 34.

    & Cost-effective, high-throughput DNA sequencing libraries for multiplexed target capture. Genome Res. 22, 939–946 (2012)

  35. 35.

    & Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

  36. 36.

    et al. A “Copernican” reassessment of the human mitochondrial DNA tree from its root. Am. J. Hum. Genet. 90, 675–684 (2012)

  37. 37.

    & Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6, 298 (2005)

  38. 38.

    , , , & Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE 7, e34131 (2012)

  39. 39.

    et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010)

  40. 40.

    & Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinformatics 12, 246 (2011)

  41. 41.

    , & Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009)

  42. 42.

    , & Principal component analysis of genetic data. Nature Genet. 40, 491–492 (2008)

  43. 43.

    et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007)

  44. 44.

    , , & Accurate sex identification of ancient human remains using DNA shotgun sequencing. J. Archaeol. Sci. 40, 4477–4482 (2013)

Download references


We thank P. Bellwood, J. Burger, P. Heggarty, M. Lipson, C. Renfrew, J. Diamond, S.Pääbo, R. Pinhasi and P. Skoglund for critical comments, and the Initiative for the Science of the Human Past at Harvard for organizing a workshop around the issues touched on by this paper. We thank S. Pääbo for support for establishing the ancient DNA facilities in Boston, and P. Skoglund for detecting the presence of two related individuals in our data set. We thank L. Orlando, T. S. Korneliussen, and C. Gamba for help in obtaining data. We thank Agilent Technologies and G. Frommer for help in developing the capture reagents. We thank C. Der Sarkissian, G. Valverde, L. Papac and B. Nickel for wet laboratory support. We thank archaeologists V. Dresely, R. Ganslmeier, O. Balanvosky, J. Ignacio Royo Guillén, A. Osztás, V. Majerik, T. Paluch, K. Somogyi and V.Voicsek for sharing samples and discussion about archaeological context. This research was supported by an Australian Research Council grant to W.H. and B.L. (DP130102158), and German Research Foundation grants to K.W.A. (Al 287/7-1 and 7-3, Al 287/10-1 and Al 287/14-1) and to H.M. (Me 3245/1-1 and 1-3). D.R. was supported by US National Science Foundation HOMINID grant BCS-1032255, US National Institutes of Health grant GM100233, and the Howard Hughes Medical Institute.

Author information

Author notes

    • Wolfgang Haak
    •  & Iosif Lazaridis

    These authors contributed equally to this work.


  1. Australian Centre for Ancient DNA, School of Earth and Environmental Sciences & Environment Institute, University of Adelaide, Adelaide, South Australia 5005, Australia

    • Wolfgang Haak
    • , Bastien Llamas
    •  & Alan Cooper
  2. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

    • Iosif Lazaridis
    • , Nadin Rohland
    • , Swapan Mallick
    • , Susanne Nordenfelt
    • , Eadaoin Harney
    • , Kristin Stewardson
    • , Qiaomei Fu
    •  & David Reich
  3. Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA

    • Iosif Lazaridis
    • , Nick Patterson
    • , Nadin Rohland
    • , Swapan Mallick
    • , Susanne Nordenfelt
    • , Eadaoin Harney
    • , Kristin Stewardson
    • , Qiaomei Fu
    •  & David Reich
  4. Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA

    • Swapan Mallick
    • , Eadaoin Harney
    • , Kristin Stewardson
    •  & David Reich
  5. Institute of Anthropology, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany

    • Guido Brandt
    • , Nicole Nicklisch
    • , Christina Roth
    • , Anna Szécsényi-Nagy
    •  & Kurt Werner Alt
  6. Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany

    • Qiaomei Fu
    •  & Matthias Meyer
  7. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100049, China

    • Qiaomei Fu
  8. Institute for Archaeological Sciences, University of Tübingen, D-72070 Tübingen, Germany

    • Alissa Mittnik
    •  & Johannes Krause
  9. Institute of Archaeology, Research Centre for the Humanities, Hungarian Academy of Science, H-1014 Budapest, Hungary

    • Eszter Bánffy
    •  & Anna Szécsényi-Nagy
  10. Römisch Germanische Kommission (RGK) Frankfurt, D-60325 Frankfurt, Germany

    • Eszter Bánffy
  11. Archaeological Research Laboratory, Stockholm University, 114 18 Stockholm, Sweden

    • Christos Economou
  12. Departments of Paleoanthropology and Archaeogenetics, Senckenberg Center for Human Evolution and Paleoenvironment, University of Tübingen, D-72070 Tübingen, Germany

    • Michael Francken
    •  & Johannes Krause
  13. State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany

    • Susanne Friederich
    • , Harald Meller
    • , Nicole Nicklisch
    •  & Kurt Werner Alt
  14. Departamento de Prehistoria y Arqueología, Facultad de Filosofía y Letras, Universidad Autónoma de Madrid, E-28049 Madrid, Spain

    • Rafael Garrido Pena
  15. The Cultural Heritage Foundation, Västerås 722 12, Sweden

    • Fredrik Hallgren
  16. Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, St Petersburg 199034, Russia

    • Valery Khartanovich
    •  & Vayacheslav Moiseyev
  17. Volga State Academy of Social Sciences and Humanities, Samara 443099, Russia

    • Aleksandr Khokhlov
    • , Pavel Kuznetsov
    •  & Oleg Mochalov
  18. Deutsches Archaeologisches Institut, Abteilung Madrid, E-28002 Madrid, Spain

    • Michael Kunst
  19. Danube Private University, A-3500 Krems, Austria

    • Nicole Nicklisch
    •  & Kurt Werner Alt
  20. Institute for Prehistory and Archaeological Science, University of Basel, CH-4003 Basel, Switzerland

    • Sandra L. Pichler
    •  & Kurt Werner Alt
  21. Departamento de Prehistòria, Universitat Autònoma de Barcelona, E-08193 Barcelona, Spain

    • Roberto Risch
  22. Departamento de Prehistòria y Arqueolgia, Universidad de Valladolid, E-47002 Valladolid, Spain

    • Manuel A. Rojo Guerra
  23. State Office for Cultural Heritage Management Baden-Württemberg, Osteology, D-78467 Konstanz, Germany

    • Joachim Wahl
  24. Max Planck Institute for the Science of Human History, D-07745 Jena, Germany

    • Johannes Krause
  25. Anthropology Department, Hartwick College, Oneonta, New York 13820, USA

    • Dorcas Brown
    •  & David Anthony


  1. Search for Wolfgang Haak in:

  2. Search for Iosif Lazaridis in:

  3. Search for Nick Patterson in:

  4. Search for Nadin Rohland in:

  5. Search for Swapan Mallick in:

  6. Search for Bastien Llamas in:

  7. Search for Guido Brandt in:

  8. Search for Susanne Nordenfelt in:

  9. Search for Eadaoin Harney in:

  10. Search for Kristin Stewardson in:

  11. Search for Qiaomei Fu in:

  12. Search for Alissa Mittnik in:

  13. Search for Eszter Bánffy in:

  14. Search for Christos Economou in:

  15. Search for Michael Francken in:

  16. Search for Susanne Friederich in:

  17. Search for Rafael Garrido Pena in:

  18. Search for Fredrik Hallgren in:

  19. Search for Valery Khartanovich in:

  20. Search for Aleksandr Khokhlov in:

  21. Search for Michael Kunst in:

  22. Search for Pavel Kuznetsov in:

  23. Search for Harald Meller in:

  24. Search for Oleg Mochalov in:

  25. Search for Vayacheslav Moiseyev in:

  26. Search for Nicole Nicklisch in:

  27. Search for Sandra L. Pichler in:

  28. Search for Roberto Risch in:

  29. Search for Manuel A. Rojo Guerra in:

  30. Search for Christina Roth in:

  31. Search for Anna Szécsényi-Nagy in:

  32. Search for Joachim Wahl in:

  33. Search for Matthias Meyer in:

  34. Search for Johannes Krause in:

  35. Search for Dorcas Brown in:

  36. Search for David Anthony in:

  37. Search for Alan Cooper in:

  38. Search for Kurt Werner Alt in:

  39. Search for David Reich in:


W.H., N.P., N.R., J.K., K.W.A. and D.R. supervised the study. W.H., E.B., C.E., M.F., S.F., R.G.P., F.H., V.K., A.K., M.K., P.K., H.M., O.M., V.M., N.N., S.L.P., R.R., M.A.R.G., C.R., A.S.-N., J.W., J.K., D.B., D.A., A.C., K.W.A. and D.R. assembled archaeological material, W.H., I.L., N.P., N.R., S.M., A.M. and D.R. analysed genetic data. I.L., N.P. and D.R. developed methods using f statistics for inferring admixture proportions. W.H., N.R., B.L., G.B., S.N., E.H., K.S. and A.M. performed wet laboratory ancient DNA work. I.L., N.R., S.M., B.L., Q.F., M.M. and D.R. developed the 390k capture reagent. W.H., I.L. and D.R. wrote the manuscript with help from all co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David Reich.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Information sections 1-11, see contents page for more details

Excel files

  1. 1.

    Supplementary Data

    This file contains Supplementary Data 1.

Zip files

  1. 1.

    Supplementary Data

    This file contains Supplementary Data 2a.

  2. 2.

    Supplementary Data

    This file contains Supplementary Data 2b.

  3. 3.

    Supplementary Data

    This file contains Supplementary Data 2c.

  4. 4.

    Supplementary Data

    This file contains Supplementary Data 2d.