Letter | Published:

Highly efficient star formation in NGC 5253 possibly from stream-fed accretion

Nature volume 519, pages 331333 (19 March 2015) | Download Citation

Abstract

Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang1 and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges2. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation3. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    The global Schmidt Law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

  2. 2.

    & Evidence for the strong effect of gas removal on the internal structure of young stellar clusters. Mon. Not. R. Astron. Soc. 369, L9–L13 (2006)

  3. 3.

    , & Molecular gas and the young starburst in NGC 5253 revisited. Astron. J. 124, 877–885 (2002)

  4. 4.

    , & The radio supernebula in NGC 5253. Astrophys. J. 532, L109–L112 (2000)

  5. 5.

    , & CO map of the dwarf starburst galaxy NGC 5253. Astrophys. J. 474, L11–L14 (1997)

  6. 6.

    , , , & A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret the line intensity ratios. Astron. Astrophys. 468, 627–635 (2007)

  7. 7.

    , , , & Integral-field near-infrared spectroscopy of two blue dwarf galaxies: NGC 5253 and He 2–10. Astron. Astrophys. 520, A82 (2010)

  8. 8.

    , , & VLA H53α observations of the central region of the super star cluster galaxy NGC 5253. Astrophys. J. 670, 295–300 (2007)

  9. 9.

    & Thermal and chemical evolution of collapsing filaments. Astrophys. J. 768, 174 (2013)

  10. 10.

    et al. Obscured star formation in the central region of the dwarf galaxy NGC 5253. Astrophys. J. 612, 222–237 (2004)

  11. 11.

    Properties of free-free, dust and CO emissions in the starbursts of blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 429, 3390–3401 (2013)

  12. 12.

    et al. Non-standard grain properties, dark gas reservoir, and extended submillimeter excess, probed by Herschel in the Large Magellanic Cloud. Astron. Astrophys. 536, A88 (2011)

  13. 13.

    , , , & HST FOS spectroscopy of localized chemical enrichment from massive stars in NGC 5253. Astrophys. J. 477, 679–692 (1997)

  14. 14.

    , , , & The localized chemical pollution in NGC 5235 revisited: results from deep echelle spectrophotometry. Astrophys. J. 656, 168–185 (2007)

  15. 15.

    , , , & Multi-wavelength analysis of the dust emission in the Small Magellanic Cloud. Astron. Astrophys. 423, 567–577 (2004)

  16. 16.

    et al. The dust-to-gas ratio in the Small Magellanic Cloud tail. Astrophys. J. 690, L76–L80 (2009)

  17. 17.

    et al. Dust/gas correlations from Herschel observations. Astron. Astrophys. 518, L74 (2010)

  18. 18.

    et al. Inefficient star formation in extremely metal poor galaxies. Nature 514, 335–338 (2014)

  19. 19.

    & Constraints on star formation theories from the Serpens molecular cloud and protocluster. Astron. Astrophys. 392, 1053–1068 (2002)

  20. 20.

    , , & Infant mortality in the hierarchical merging scenario: dependence on gas expulsion time-scales. Mon. Not. R. Astron. Soc. 428, 1303–1311 (2013)

  21. 21.

    , , , & The central star cluster of the star-forming dwarf galaxy NGC 5253. Astrophys. J. 457, 610–615 (1996)

  22. 22.

    & A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630, 250–268 (2005)

  23. 23.

    & Star formation in NGC 5253. Astrophys. J. 338, 789–803 (1989)

  24. 24.

    & Inflows and outflows in the dwarf starburst galaxy NGC 5253: high-resolution HI observations. Astron. J. 135, 527–537 (2008)

  25. 25.

    et al. The intriguing HI gas in NGC 5253: an infall of a diffuse, low-metallicity HI cloud? Mon. Not. R. Astron. Soc. 419, 1051–1069 (2012)

  26. 26.

    Evolution of cold streams and the emergence of the Hubble sequence. Astrophys. J. 789, L21 (2014)

  27. 27.

    , , , & The recent cluster formation histories of NGC 5253 and NGC 3077: environmental impact on star formation. Astrophys. J. 603, 503–522 (2004)

  28. 28.

    , & The star cluster population of NGC 5253. Astron. Astrophys. 433, 447–454 (2005)

  29. 29.

    , , & The NGC 5253 star cluster system. I. Standard modelling and infrared-excess. Mon. Not. R. Astron. Soc. 431, 2917–2932 (2013)

  30. 30.

    et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)

  31. 31.

    & Smithsonian Submillimeter Wavelength Array. Proc. SPIE 2200, 335–346 (1994)

  32. 32.

    , & in Astronomical Data Analysis Software and Systems IV (eds , & ) 433–436 (Astron. Soc. Pacif. Conference Series Vol. 77, 1995)

  33. 33.

    et al. A submillimeter high angular resolution bolometer array camera for the Caltech submillimeter observatory. Proc. STT 7, 426–438 (1996)

  34. 34.

    CRUSH: fast and scalable data reduction for imaging arrays. Proc. SPIE 7420, 45–59 (2008)

  35. 35.

    in Multi-feed Systems for Radio Telescopes (eds & ) 309–317 (Astron. Soc. Pacif. Conference Series Vol. 75, 1995)

  36. 36.

    et al. The Hubble flow around the Centaurus A/M83 galaxy complex. Astron. J. 133, 504–517 (2007)

  37. 37.

    The impact of star formation on the interstellar medium in dwarf galaxies. II. The formation of galactic winds. Astrophys. J. 506, 222–252 (1998)

  38. 38.

    , & The universal rotation curve of spiral galaxies. I. The dark matter connection. Mon. Not. R. Astron. Soc. 281, 27–47 (1996)

  39. 39.

    et al. The GHOSTS survey. I. Hubble Space Telescope Advanced Camera for Surveys data. Astrophys. J. 195, 18 (2011)

  40. 40.

    , , & The effect of metallicity on Cepheid-based distances. Astrophys. J. 608, 42–61 (2004)

  41. 41.

    , , & Warm molecular gas in dwarf starburst galaxies: CO(3–2) observations. Astron. J. 121, 740–752 (2001)

  42. 42.

    , , & SCUBA observations of galaxies with metallicity measurements: a new method for determining the relation between submillimetre luminosity and dust mass. Mon. Not. R. Astron. Soc. 335, 753–761 (2002)

  43. 43.

    & The birth of a super star cluster. Astrophys. J. 602, L85–L88 (2004)

  44. 44.

    , & The radio properties of NGC 5253 and its unusual HII regions. Astron. J. 116, 1212–1220 (1998)

  45. 45.

    , & Corrections to virial estimates of molecular cloud masses. Astrophys. J. 333, 821–825 (1988)

  46. 46.

    , , & Mass, luminosity, and line width relations of Galactic molecular clouds. Astrophys. J. 319, 730–741 (1987)

  47. 47.

    & The universality of turbulence in Galactic molecular clouds. Astrophys. J. 615, L45–L48 (2004)

  48. 48.

    et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. 123, 3–40 (1999)

  49. 49.

    et al. The effects of stellar rotation. II. A comprehensive set of STARBURST99 models. Astrophys. J. 212 (Suppl.). 18 (2014)

  50. 50.

    & Optical spectroscopic and abundance mapping of the amorphous galaxy NGC 5253. Mon. Not. R. Astron. Soc. 239, 297–324 (1989)

  51. 51.

    , & The ionized gas in the central region of NGC 5253. 2D mapping of the physical and chemical properties. Astron. Astrophys. 544, A60 (2012)

  52. 52.

    , & Star-forming regions in blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 295, 43–54 (1998)

  53. 53.

    , & High spatial resolution mid-infrared spectroscopy of NGC 5253: the stellar content of the embedded super-star cluster. Astron. Astrophys. 429, 449–467 (2005)

  54. 54.

    , , & Detection of Wolf–Rayet stars of WN and WC subtypes in super-star clusters of NGC 5253. Astrophys. J. 481, L75–L79 (1997)

  55. 55.

    , , & Piecing together the puzzle of NGC 5253: abundances, kinematics, and WR stars. Astron. Astrophys. 550, A88 (2013)

  56. 56.

    et al. An extragalactic supernebula confined by gravity. Nature 423, 621–623 (2003)

  57. 57.

    et al. [SIV] in the NGC 5253 supernebula: ionized gas kinematics at high resolution. Astrophys. J. 755, 59 (2012)

  58. 58.

    et al. Dust and recent star formation in the core of NGC 5253. Astron. J. 114, 1834–1849 (1997)

  59. 59.

    & Dust and super star clusters in NGC 5253. Astron. Astrophys. 415, 509–520 (2004)

  60. 60.

    & The luminosity function of OB associations in the Galaxy. Astrophys. J. 476, 144–165 (1997)

  61. 61.

    & Soft X-ray emission from NGC 5253 and the ionized interstellar medium. Astrophys. J. 447, 171–183 (1995)

  62. 62.

    & Star formation in active dwarf galaxies. Astrophys. J. 311, 98–112 (1986)

  63. 63.

    , & The optical-to-radio spectral energy distributions of low-metallicity blue compact dwarf galaxies. Astron. Astrophys. 434, 849–866 (2005)

  64. 64.

    et al. Gas-to-dust ratios in local galaxies over a 2 dex metallicity range. Astron. Astrophys. 562, A31 (2014)

  65. 65.

    , & Interstellar dust models consistent with extinction, emission, and abundance constraints. Astrophys. J. Suppl. 152, 211–249 (2004)

  66. 66.

    A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009)

  67. 67.

    Filamentary structure in NGC 5253. Publ. Astron. Soc. Pacif. 93, 552–553 (1981)

  68. 68.

    , , , & An ionization cone in the dwarf starburst galaxy NGC 5253. Astrophys. J. 741, L17 (2011)

  69. 69.

    A pressure and metallicity dependence for molecular cloud correlations and the calibration of mass. Astrophys. J. 338, 178–196 (1989)

  70. 70.

    Dynamical constraints on star formation efficiency. Astrophys. J. 267, L97–L101 (1983)

  71. 71.

    , & The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo. Mon. Not. R. Astron. Soc. 384, 1231–1241 (2008)

Download references

Acknowledgements

We thank J. Carpenter, S. Goodwin, M. Heyer, L. Hunt, R. Hurt, M. Jura, C. Lada, C. Leitherer and S. Van Dyk for assistance with the analysis. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academica Sinica.

Author information

Affiliations

  1. Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095-1547, USA

    • J. L. Turner
    •  & S. M. Consiglio
  2. Department of Physics and Astronomy, University of Tel Aviv, 69978 Ramat Aviv, Israel

    • S. C. Beck
  3. Observational Cosmology Laboratory, Code 665, NASA at Goddard Space Flight Center, Greenbelt, Maryland 20771, USA

    • D. J. Benford
  4. Academia Sinica, Astronomy and Astrophysics, 11F Astronomy-Mathematics Building, AS/NTU No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

    • P. T. P. Ho
  5. Department of Physics, Caltech, Pasadena, California 91125, USA; Institute for Astrophysics, University of Minnesota, Minneapolis, Minnesota 55405, USA

    • A. Kovács
  6. Department of Physics, New Mexico Institute of Mining and Technology, Socorro, New Mexico 85723, USA

    • D. S. Meier
  7. National Radio Astronomy Observatory, 1003 Lopezville Road, Socorro, New Mexico 85723, USA

    • D. S. Meier
  8. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA

    • J.-H. Zhao

Authors

  1. Search for J. L. Turner in:

  2. Search for S. C. Beck in:

  3. Search for D. J. Benford in:

  4. Search for S. M. Consiglio in:

  5. Search for P. T. P. Ho in:

  6. Search for A. Kovács in:

  7. Search for D. S. Meier in:

  8. Search for J.-H. Zhao in:

Contributions

J.L.T., S.C.B., D.J.B., A.K. and D.S.M. performed the observations. J.L.T., S.C.B. and P.T.P.H. conceived the project and wrote the observing proposal. J.-H.Z. reduced and imaged the Submillimeter Array 870-μm data; A.K. reduced, imaged and analysed the SHARC 350-μm data. J.L.T. and S.M.C. obtained derived quantities and performed data analysis. J.L.T. wrote the first draft and constructed figures. All authors read, discussed and commented on the draft.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. L. Turner.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature14218

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.