Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly efficient star formation in NGC 5253 possibly from stream-fed accretion

Abstract

Gas clouds in present-day galaxies are inefficient at forming stars. Low star-formation efficiency is a critical parameter in galaxy evolution: it is why stars are still forming nearly 14 billion years after the Big Bang1 and why star clusters generally do not survive their births, instead dispersing to form galactic disks or bulges2. Yet the existence of ancient massive bound star clusters (globular clusters) in the Milky Way suggests that efficiencies were higher when they formed ten billion years ago. A local dwarf galaxy, NGC 5253, has a young star cluster that provides an example of highly efficient star formation3. Here we report the detection of the J = 3→2 rotational transition of CO at the location of the massive cluster. The gas cloud is hot, dense, quiescent and extremely dusty. Its gas-to-dust ratio is lower than the Galactic value, which we attribute to dust enrichment by the embedded star cluster. Its star-formation efficiency exceeds 50 per cent, tenfold that of clouds in the Milky Way. We suggest that high efficiency results from the force-feeding of star formation by a streamer of gas falling into the galaxy.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: CO J = 3→2 emission in NGC 5253.
Figure 2: Dust and gas in NGC 5253.

References

  1. Kennicutt, R. C., Jr The global Schmidt Law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    ADS  CAS  Google Scholar 

  2. Bastian, N. & Goodwin, S. P. Evidence for the strong effect of gas removal on the internal structure of young stellar clusters. Mon. Not. R. Astron. Soc. 369, L9–L13 (2006)

    ADS  Google Scholar 

  3. Meier, D. S., Turner, J. L. & Beck, S. C. Molecular gas and the young starburst in NGC 5253 revisited. Astron. J. 124, 877–885 (2002)

    ADS  Google Scholar 

  4. Turner, J. L., Beck, S. C. & Ho, P. T. P. The radio supernebula in NGC 5253. Astrophys. J. 532, L109–L112 (2000)

    ADS  CAS  PubMed  Google Scholar 

  5. Turner, J. L., Beck, S. C. & Hurt, R. L. A. CO map of the dwarf starburst galaxy NGC 5253. Astrophys. J. 474, L11–L14 (1997)

    ADS  CAS  Google Scholar 

  6. van der Tak, F. F. S., Black, J. H., Schöier, F. L., Jansen, D. J. & van Dishoeck, E. F. A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret the line intensity ratios. Astron. Astrophys. 468, 627–635 (2007)

    ADS  Google Scholar 

  7. Cresci, G., Vanzi, L., Sauvage, M., Santagelo, G. & van der Werf, P. Integral-field near-infrared spectroscopy of two blue dwarf galaxies: NGC 5253 and He 2–10. Astron. Astrophys. 520, A82 (2010)

    ADS  Google Scholar 

  8. Rodríguez-Rico, C. A., Goss, W. M., Turner, J. L. & Gómez, Y. VLA H53α observations of the central region of the super star cluster galaxy NGC 5253. Astrophys. J. 670, 295–300 (2007)

    ADS  Google Scholar 

  9. Gray, W. J. & Scannapieco, E. Thermal and chemical evolution of collapsing filaments. Astrophys. J. 768, 174 (2013)

    ADS  Google Scholar 

  10. Alonso-Herrero, A. et al. Obscured star formation in the central region of the dwarf galaxy NGC 5253. Astrophys. J. 612, 222–237 (2004)

    ADS  Google Scholar 

  11. Hirashita, H. Properties of free-free, dust and CO emissions in the starbursts of blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 429, 3390–3401 (2013)

    ADS  CAS  Google Scholar 

  12. Galliano, F. et al. Non-standard grain properties, dark gas reservoir, and extended submillimeter excess, probed by Herschel in the Large Magellanic Cloud. Astron. Astrophys. 536, A88 (2011)

    Google Scholar 

  13. Kobulnicky, H. A., Skillman, E. D., Roy, J.-R., Walsh, J. R. & Rosa, M. R. HST FOS spectroscopy of localized chemical enrichment from massive stars in NGC 5253. Astrophys. J. 477, 679–692 (1997)

    ADS  CAS  Google Scholar 

  14. López-Sánchez, Á. R., Esteban, C., García-Rojas, J., Peimbert, M. & Rodríguez, M. The localized chemical pollution in NGC 5235 revisited: results from deep echelle spectrophotometry. Astrophys. J. 656, 168–185 (2007)

    ADS  Google Scholar 

  15. Bot, C., Boulanger, F., Lagache, G., Cambrésy, L. & Egret, D. Multi-wavelength analysis of the dust emission in the Small Magellanic Cloud. Astron. Astrophys. 423, 567–577 (2004)

    ADS  CAS  Google Scholar 

  16. Gordon, K. et al. The dust-to-gas ratio in the Small Magellanic Cloud tail. Astrophys. J. 690, L76–L80 (2009)

    ADS  CAS  Google Scholar 

  17. Roman-Duval, J. et al. Dust/gas correlations from Herschel observations. Astron. Astrophys. 518, L74 (2010)

    ADS  Google Scholar 

  18. Shi, Y. et al. Inefficient star formation in extremely metal poor galaxies. Nature 514, 335–338 (2014)

    ADS  CAS  PubMed  Google Scholar 

  19. Olmi, L. & Testi, L. Constraints on star formation theories from the Serpens molecular cloud and protocluster. Astron. Astrophys. 392, 1053–1068 (2002)

    ADS  CAS  Google Scholar 

  20. Smith, R., Goodwin, S., Fellhauer, M. & Assmann, P. Infant mortality in the hierarchical merging scenario: dependence on gas expulsion time-scales. Mon. Not. R. Astron. Soc. 428, 1303–1311 (2013)

    ADS  Google Scholar 

  21. Beck, S. C., Turner, J. L., Ho, P. T. P., Lacy, J. H. & Kelly, D. M. The central star cluster of the star-forming dwarf galaxy NGC 5253. Astrophys. J. 457, 610–615 (1996)

    ADS  CAS  Google Scholar 

  22. Krumholz, M. R. & McKee, C. F. A general theory of turbulence-regulated star formation, from spirals to ultraluminous infrared galaxies. Astrophys. J. 630, 250–268 (2005)

    ADS  Google Scholar 

  23. Caldwell, N. & Phillips, M. M. Star formation in NGC 5253. Astrophys. J. 338, 789–803 (1989)

    ADS  Google Scholar 

  24. Kobulnicky, H. A. & Skillman, E. D. Inflows and outflows in the dwarf starburst galaxy NGC 5253: high-resolution HI observations. Astron. J. 135, 527–537 (2008)

    ADS  CAS  Google Scholar 

  25. López-Sánchez, Á. R. et al. The intriguing HI gas in NGC 5253: an infall of a diffuse, low-metallicity HI cloud? Mon. Not. R. Astron. Soc. 419, 1051–1069 (2012)

    ADS  Google Scholar 

  26. Cen, R. Evolution of cold streams and the emergence of the Hubble sequence. Astrophys. J. 789, L21 (2014)

    ADS  Google Scholar 

  27. Harris, J., Calzetti, D., Gallagher, J. S., Smith, D. A. & Conselice, C. J. The recent cluster formation histories of NGC 5253 and NGC 3077: environmental impact on star formation. Astrophys. J. 603, 503–522 (2004)

    ADS  CAS  Google Scholar 

  28. Cresci, G., Vanzi, L. & Sauvage, M. The star cluster population of NGC 5253. Astron. Astrophys. 433, 447–454 (2005)

    ADS  Google Scholar 

  29. de Grijs, R., Anders, P., Zackrisson, E. & Göran, Ö. The NGC 5253 star cluster system. I. Standard modelling and infrared-excess. Mon. Not. R. Astron. Soc. 431, 2917–2932 (2013)

    ADS  CAS  Google Scholar 

  30. Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)

    ADS  CAS  PubMed  Google Scholar 

  31. Moran, J. M. & Ho, P. T. P. Smithsonian Submillimeter Wavelength Array. Proc. SPIE 2200, 335–346 (1994)

    ADS  Google Scholar 

  32. Sault, R. J., Teuben, P. J. & Wright, M. C. H. in Astronomical Data Analysis Software and Systems IV (eds Shaw, R., Payne, H. E. & Hayes, J. J. E. ) 433–436 (Astron. Soc. Pacif. Conference Series Vol. 77, 1995)

    Google Scholar 

  33. Wang, N. et al. A submillimeter high angular resolution bolometer array camera for the Caltech submillimeter observatory. Proc. STT 7, 426–438 (1996)

    Google Scholar 

  34. Kovács, A. CRUSH: fast and scalable data reduction for imaging arrays. Proc. SPIE 7420, 45–59 (2008)

    Google Scholar 

  35. Emerson, D. T. in Multi-feed Systems for Radio Telescopes (eds Emerson, D. T. & Payne, J. M. ) 309–317 (Astron. Soc. Pacif. Conference Series Vol. 75, 1995)

    Google Scholar 

  36. Karachentsev, I. D. et al. The Hubble flow around the Centaurus A/M83 galaxy complex. Astron. J. 133, 504–517 (2007)

    ADS  Google Scholar 

  37. Martin, C. L. The impact of star formation on the interstellar medium in dwarf galaxies. II. The formation of galactic winds. Astrophys. J. 506, 222–252 (1998)

    ADS  CAS  Google Scholar 

  38. Persic, M., Salucci, P. & Stel, F. The universal rotation curve of spiral galaxies. I. The dark matter connection. Mon. Not. R. Astron. Soc. 281, 27–47 (1996)

    ADS  CAS  Google Scholar 

  39. Radburn-Smith, D. J. et al. The GHOSTS survey. I. Hubble Space Telescope Advanced Camera for Surveys data. Astrophys. J. 195, 18 (2011)

    Google Scholar 

  40. Sakai, S., Ferrarese, L., Kennicutt, R. C., Jr & Saha, A. The effect of metallicity on Cepheid-based distances. Astrophys. J. 608, 42–61 (2004)

    ADS  CAS  Google Scholar 

  41. Meier, D. S., Turner, J. L., Crosthwaite, L. P. & Beck, S. C. Warm molecular gas in dwarf starburst galaxies: CO(3–2) observations. Astron. J. 121, 740–752 (2001)

    ADS  Google Scholar 

  42. James, A., Dunne, L., Eales, S. & Edmunds, M. G. SCUBA observations of galaxies with metallicity measurements: a new method for determining the relation between submillimetre luminosity and dust mass. Mon. Not. R. Astron. Soc. 335, 753–761 (2002)

    ADS  Google Scholar 

  43. Turner, J. L. & Beck, S. C. The birth of a super star cluster. Astrophys. J. 602, L85–L88 (2004)

    ADS  Google Scholar 

  44. Turner, J. L., Ho, P. T. P. & Beck, S. C. The radio properties of NGC 5253 and its unusual HII regions. Astron. J. 116, 1212–1220 (1998)

    ADS  CAS  Google Scholar 

  45. MacLauren, I., Richardson, K. M. & Wolfendale, A. W. Corrections to virial estimates of molecular cloud masses. Astrophys. J. 333, 821–825 (1988)

    ADS  Google Scholar 

  46. Solomon, P. M., Rivolo, A. R., Barrett, J. & Yahil, A. Mass, luminosity, and line width relations of Galactic molecular clouds. Astrophys. J. 319, 730–741 (1987)

    ADS  CAS  Google Scholar 

  47. Heyer, M. & Brunt, C. M. The universality of turbulence in Galactic molecular clouds. Astrophys. J. 615, L45–L48 (2004)

    ADS  CAS  Google Scholar 

  48. Leitherer, C. et al. Starburst99: synthesis models for galaxies with active star formation. Astrophys. J. Suppl. 123, 3–40 (1999)

    ADS  CAS  Google Scholar 

  49. Leitherer, C. et al. The effects of stellar rotation. II. A comprehensive set of STARBURST99 models. Astrophys. J. 212 (Suppl.). 18 (2014)

    Google Scholar 

  50. Walsh, J. R. & Roy, J.-R. Optical spectroscopic and abundance mapping of the amorphous galaxy NGC 5253. Mon. Not. R. Astron. Soc. 239, 297–324 (1989)

    ADS  CAS  Google Scholar 

  51. Monreal-Ibero, A., Walsh, J. R. & Vílchez, J. M. The ionized gas in the central region of NGC 5253. 2D mapping of the physical and chemical properties. Astron. Astrophys. 544, A60 (2012)

    ADS  Google Scholar 

  52. Davies, R. I., Sugai, H. & Ward, M. J. Star-forming regions in blue compact dwarf galaxies. Mon. Not. R. Astron. Soc. 295, 43–54 (1998)

    ADS  CAS  Google Scholar 

  53. Martín-Hernandez, N. L., Schaerer, D. & Sauvage, M. High spatial resolution mid-infrared spectroscopy of NGC 5253: the stellar content of the embedded super-star cluster. Astron. Astrophys. 429, 449–467 (2005)

    ADS  Google Scholar 

  54. Schaerer, D., Contini, T., Kunth, D. & Meynet, G. Detection of Wolf–Rayet stars of WN and WC subtypes in super-star clusters of NGC 5253. Astrophys. J. 481, L75–L79 (1997)

    ADS  Google Scholar 

  55. Westmoquette, M. S., James, B., Monreal-Ibero, A. & Walsh, J. R. Piecing together the puzzle of NGC 5253: abundances, kinematics, and WR stars. Astron. Astrophys. 550, A88 (2013)

    ADS  Google Scholar 

  56. Turner, J. L. et al. An extragalactic supernebula confined by gravity. Nature 423, 621–623 (2003)

    ADS  CAS  PubMed  Google Scholar 

  57. Beck, S. C. et al. [SIV] in the NGC 5253 supernebula: ionized gas kinematics at high resolution. Astrophys. J. 755, 59 (2012)

    ADS  Google Scholar 

  58. Calzetti, D. et al. Dust and recent star formation in the core of NGC 5253. Astron. J. 114, 1834–1849 (1997)

    ADS  Google Scholar 

  59. Vanzi, L. & Sauvage, M. Dust and super star clusters in NGC 5253. Astron. Astrophys. 415, 509–520 (2004)

    ADS  Google Scholar 

  60. McKee, C. F. & Williams, J. P. The luminosity function of OB associations in the Galaxy. Astrophys. J. 476, 144–165 (1997)

    ADS  CAS  Google Scholar 

  61. Martin, C. L. & Kennicutt, R. C., Jr Soft X-ray emission from NGC 5253 and the ionized interstellar medium. Astrophys. J. 447, 171–183 (1995)

    ADS  CAS  Google Scholar 

  62. Thronson, H. A. & Telesco, C. M. Star formation in active dwarf galaxies. Astrophys. J. 311, 98–112 (1986)

    ADS  Google Scholar 

  63. Hunt, L., Bianchi, S. & Maiolino, R. The optical-to-radio spectral energy distributions of low-metallicity blue compact dwarf galaxies. Astron. Astrophys. 434, 849–866 (2005)

    ADS  CAS  Google Scholar 

  64. Rémy-Ruyer, A. et al. Gas-to-dust ratios in local galaxies over a 2 dex metallicity range. Astron. Astrophys. 562, A31 (2014)

    Google Scholar 

  65. Zubko, V., Dwek, E. & Arendt, R. G. Interstellar dust models consistent with extinction, emission, and abundance constraints. Astrophys. J. Suppl. 152, 211–249 (2004)

    ADS  CAS  Google Scholar 

  66. Jenkins, E. B. A unified representation of gas-phase element depletions in the interstellar medium. Astrophys. J. 700, 1299–1348 (2009)

    ADS  CAS  Google Scholar 

  67. Graham, J. Filamentary structure in NGC 5253. Publ. Astron. Soc. Pacif. 93, 552–553 (1981)

    ADS  CAS  Google Scholar 

  68. Zastrow, J., Oey, M. S., Veilleux, S., McDonald, M. & Martin, C. L. An ionization cone in the dwarf starburst galaxy NGC 5253. Astrophys. J. 741, L17 (2011)

    ADS  Google Scholar 

  69. Elmegreen, B. A pressure and metallicity dependence for molecular cloud correlations and the calibration of mass. Astrophys. J. 338, 178–196 (1989)

    ADS  Google Scholar 

  70. Mathieu, R. D. Dynamical constraints on star formation efficiency. Astrophys. J. 267, L97–L101 (1983)

    ADS  CAS  Google Scholar 

  71. Baumgardt, H., Kroupa, P. & Parmentier, G. The influence of residual gas expulsion on the evolution of the Galactic globular cluster system and the origin of the Population II halo. Mon. Not. R. Astron. Soc. 384, 1231–1241 (2008)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Carpenter, S. Goodwin, M. Heyer, L. Hunt, R. Hurt, M. Jura, C. Lada, C. Leitherer and S. Van Dyk for assistance with the analysis. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academica Sinica.

Author information

Authors and Affiliations

Authors

Contributions

J.L.T., S.C.B., D.J.B., A.K. and D.S.M. performed the observations. J.L.T., S.C.B. and P.T.P.H. conceived the project and wrote the observing proposal. J.-H.Z. reduced and imaged the Submillimeter Array 870-μm data; A.K. reduced, imaged and analysed the SHARC 350-μm data. J.L.T. and S.M.C. obtained derived quantities and performed data analysis. J.L.T. wrote the first draft and constructed figures. All authors read, discussed and commented on the draft.

Corresponding author

Correspondence to J. L. Turner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Channel maps of CO(3→2) emission in NGC 5253.

Positions are relative to a reference position 13 h 39 m 56.249 s, −31° 38′ 29″ (J2000). Channels are 10 km s−1 wide; the heliocentric velocity is noted on the individual maps. The colour bar range maximum is 1 Jy per beam for each 10 km s−1 channel. The beam is 4″ × 2″, p.a. 0°.

Extended Data Figure 2 SMA image of CO(3→2) with CO(2→1).

CO(3→2) emission is shown in colour, with an image2 from the Owens Valley Millimeter Array of CO(2→1) in contours. The SMA CO(3→2) image has been smoothed from its original 4″ × 2″, p.a. 0° resolution to match the 9.7″ × 5″, p.a. −84°, beam of the CO(2→1) image. The colour image flux range is 3–40 Jy km s−1 per beam. Contours are linear multiples of 4 Jy km s−1 per beam.

Extended Data Figure 3 RADEX modelling of Cloud D and streamer.

Escape probability transfer modelling of the CO(3→2) to CO(2→1) line ratio. Models were run using a black-body radiation field, spherical escape probability and NCO = 1016 cm−2. a, Cloud D. Magenta is for the value I32/I21 = 2.25, the optically thin limit, and indigo is for the 1σ lower limit to the measured value of 2.6. There is no solution for I32/I21 = 2.6. b, Streamer. Magenta is for I32/I21 = 0.98, and indigo and green are solutions for the −1σ and +1σ values, respectively.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Turner, J., Beck, S., Benford, D. et al. Highly efficient star formation in NGC 5253 possibly from stream-fed accretion. Nature 519, 331–333 (2015). https://doi.org/10.1038/nature14218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14218

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing