Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ligand-enabled meta-C–H activation using a transient mediator

Abstract

Achieving site selectivity in C–H functionalization reactions is a significant challenge, especially when the target C–H bond is distant from existing functional groups1,2,3,4,5. Coordination of a functional group to a metal is often a key driving force and control element in many important reactions including asymmetric hydrogenation6, epoxidation7,8 and lithiation9. Exploitation of this effect has led to the development of a broad range of directed C–H activation reactions10,11,12,13,14. However, these C–H activation methods are limited to proximal C–H bonds, which are spatially and geometrically accessible from the directing functional group. The development of meta-selective C–H functionalizations remains a significant challenge1,2,3,4,5,15,16,17. We recently developed a U-shaped template that can be used to overcome this constraint and have shown that it can be used to selectively activate remote meta-C–H bonds1,2. Although this approach has proved to be applicable to various substrates and catalytic transformations3,4,5, the need for a covalently attached, complex template is a substantial drawback for synthetic applications. Here we report an alternative approach employing norbornene as a transient mediator to achieve meta-selective C–H activation with a simple and common ortho-directing group. The use of a newly developed pyridine-based ligand is crucial for relaying the palladium catalyst to the meta position by norbornene after initial ortho-C–H activation. This catalytic reaction demonstrates the feasibility of switching ortho-selectivity to meta-selectivity in C–H activation of the same substrate by catalyst control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a new approach for meta-C–H activation.
Figure 2: Discovery of a ligand that enables meta-C–H alkylation using norbornene as a transient mediator.
Figure 3: meta-C–H alkylation of phenylacetic amides.
Figure 4: Scope of organohalide coupling partners.

Similar content being viewed by others

References

  1. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  2. Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  3. Lee, S., Lee, H. & Tan, K. L. Meta-selective C–H functionalization using a nitrile-based directing group and cleavable Si-tether. J. Am. Chem. Soc. 135, 18778–18781 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wan, L., Dastbaravardeh, N., Li, G. & Yu, J.-Q. Cross-coupling of remote meta-C–H bonds directed by a U-shaped template. J. Am. Chem. Soc. 135, 18056–18059 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang, G. et al. Pd(II)-catalyzed meta-C–H olefination, arylation, and acetoxylation of indolines using a U-shaped template. J. Am. Chem. Soc. 136, 10807–10813 (2014)

    Article  CAS  PubMed  Google Scholar 

  6. Brown, J. M. Selectivity and mechanism in catalytic asymmetric synthesis. Chem. Soc. Rev. 22, 25–41 (1993)

    Article  CAS  Google Scholar 

  7. Johnson, R. A. & Sharpless, K. B. in Catalytic Asymmetric Synthesis 2nd edn (ed. Ojima, I.) 231–280 (Wiley, 2005)

    Google Scholar 

  8. Li, Z. & Yamamoto, H. Hydroxamic acids in asymmetric synthesis. Acc. Chem. Res. 46, 506–518 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. Hartung, C. G. & Snieckus, V. in Modern Arene Chemistry (ed. Astruc, D.) 330–367 (Wiley-VCH, 2004)

    Google Scholar 

  10. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Daugulis, O., Do, H.-Q. & Shabashov, D. Palladium- and copper-catalyzed arylation of carbon–hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Engle, K. M., Mei, T.-S., Wasa, M. & Yu, J.-Q. Weak coordination as a powerful means for developing broadly useful C–H functionalization reactions. Acc. Chem. Res. 45, 788–802 (2012)

    Article  CAS  PubMed  Google Scholar 

  13. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wencel-Delord, J., Dröge, T., Liu, F. & Glorius, F. Towards mild metal-catalyzed C–H bond activation. Chem. Soc. Rev. 40, 4740–4761 (2011)

    Article  CAS  PubMed  Google Scholar 

  15. Saidi, O. et al. Ruthenium-catalyzed meta-sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133, 19298–19301 (2011)

    Article  CAS  PubMed  Google Scholar 

  16. Duong, H. A., Gilligan, R. E., Cooke, M. L., Phipps, R. J. & Gaunt, M. J. Copper(II)-catalyzed meta-selective direct arylation of α-aryl carbonyl compounds. Angew. Chem. Int. Ed. 50, 463–466 (2011)

    Article  CAS  Google Scholar 

  17. Hofmann, N. & Ackermann, L. meta-Selective C–H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013)

    Article  CAS  PubMed  Google Scholar 

  18. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o,o′-disubstituted vinylarenes. Angew. Chem. Int. Edn Engl. 36, 119–122 (1997)

    Article  CAS  Google Scholar 

  19. Faccini, F., Motti, E. & Catellani, M. A new reaction sequence involving palladium-catalyzed unsymmetrical aryl coupling. J. Am. Chem. Soc. 126, 78–79 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. Martins, A., Mariampillai, B. & Lautens, M. Synthesis in the key of Catellani: norbornene-mediated ortho C–H functionalization. Top. Curr. Chem. 292, 1–33 (2010)

    CAS  PubMed  Google Scholar 

  21. Cárdenas, D. J., Martín-Matute, B. & Echavarren, A. M. Aryl transfer between Pd(II) centers or Pd(IV) intermediates in Pd-catalyzed domino reactions. J. Am. Chem. Soc. 128, 5033–5040 (2006)

    Article  PubMed  Google Scholar 

  22. Dong, Z. & Dong, G. Ortho vs ipso: site-selective Pd and norbornene-catalyzed arene C–H amination using aryl halides. J. Am. Chem. Soc. 135, 18350–18353 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Jiao, L. & Bach, T. Palladium-catalyzed direct 2-alkylation of indoles by norbornene-mediated regioselective cascade C–H activation. J. Am. Chem. Soc. 133, 12990–12993 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. Jiao, L., Herdtweck, E. & Bach, T. Pd(II)-catalyzed regioselective 2-alkylation of indoles via a norbornene-mediated C–H activation: mechanism and applications. J. Am. Chem. Soc. 134, 14563–14572 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Catellani, M. & Ferioli, L. An improved synthesis of 1,4-cis,exo-hexa- or tetrahydromethano- or -ethanobiphenylene derivatives catalyzed by palladium complexes. Synthesis 769–772 (1996)

  26. Wang, X.-C. et al. Pd(II)-catalyzed C−H iodination using molecular I2 as the sole oxidant. J. Am. Chem. Soc. 135, 10326–10329 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu, R.-Y., He, J., Wang, X.-C. & Yu, J.-Q. Ligand-promoted alkylation of C(sp3)–H and C(sp2)–H bonds. J. Am. Chem. Soc. 136, 13194–13197 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He, J. et al. Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α–amino acids. Science 343, 1216–1220 (2014)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  29. Li, S., Chen, G., Feng, C.-G., Gong, W. & Yu, J.-Q. Ligand-enabled γ-C–H olefination and carbonylation: construction of β-quaternary carbon centers. J. Am. Chem. Soc. 136, 5267–5270 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Martins, A., Candito, D. A. & Lautens, M. Palladium-catalyzed reductive ortho-arylation: evidence for the decomposition of 1,2-dimethoxyethane and subsequent arylpalladium(II) reduction. Org. Lett. 12, 5186–5188 (2010)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Spangler and A. Homs for constructive suggestions. We thank the Scripps Research Institute and the National Institutes of Health (NIGMS, 1R01 GM102265) for financial support. L.-Z.F. is a visiting scholar from School of Pharmacy, Xinxiang Medical University and is sponsored by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

X.-C.W. and R.-Y.Z. developed the reactions. W.G. and S.L. synthesized the ligands. L.-Z.F. examined the substrate scope. K.M.E. performed preliminary studies. J.-Q.Y. conceived this concept and prepared the manuscript with feedback from X.-C.W.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data and Supplementary References, see contents page for details. (PDF 10759 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XC., Gong, W., Fang, LZ. et al. Ligand-enabled meta-C–H activation using a transient mediator. Nature 519, 334–338 (2015). https://doi.org/10.1038/nature14214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14214

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing