Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Necroptosis and its role in inflammation

Abstract

Regulated cell death has essential functions in development and in adult tissue homeostasis. Necroptosis is a newly discovered pathway of regulated necrosis that requires the proteins RIPK3 and MLKL and is induced by death receptors, interferons, toll-like receptors, intracellular RNA and DNA sensors, and probably other mediators. RIPK1 has important kinase-dependent and scaffolding functions that inhibit or trigger necroptosis and apoptosis. Mouse-model studies have revealed important functions for necroptosis in inflammation and suggested that it could be implicated in the pathogenesis of many human inflammatory diseases. We discuss the mechanisms regulating necroptosis and its potential role in inflammation and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways leading to necroptosis.
Figure 2: Regulated cell death triggers inflammation.
Figure 3: Regulated cell death fuels the vicious circle in chronic inflammation.

Similar content being viewed by others

References

  1. Wallach, D., Kang, T. B. & Kovalenko, A. Concepts of tissue injury and cell death in inflammation: a historical perspective. Nature Rev. Immunol. 14, 51–59 (2014).

    Article  CAS  Google Scholar 

  2. Vanden Berghe, T., Linkermann, A., Jouan-Lanhouet, S., Walczak, H. & Vandenabeele, P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nature Rev. Mol. Cell Biol. 15, 135–147 (2014).

    Article  CAS  Google Scholar 

  3. Lamkanfi, M. & Dixit, V. M. Mechanisms and functions of inflammasomes. Cell 157, 1013–1022 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: an ordered cellular explosion. Nature Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article  CAS  Google Scholar 

  5. Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477–1485 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Holler, N. et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunol. 1, 489–495 (2000).

    Article  CAS  ADS  Google Scholar 

  7. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chem. Biol. 1, 112–119 (2005).

    Article  CAS  Google Scholar 

  8. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nature Chem. Biol. 4, 313–321 (2008).

    Article  CAS  Google Scholar 

  9. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1–RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009). This paper along with refs 9 and 10 identified RIPK3 as a key regulator of TNF-induced necroptosis.

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Vandenabeele, P., Declercq, W., Van Herreweghe, F. & Vanden Berghe, T. The role of the kinases RIP1 and RIP3 in TNF-induced necrosis. Sci. Signal. 3, re4 (2010).

    Article  PubMed  CAS  Google Scholar 

  13. Li, J. et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell 150, 339–350 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kaiser, W. J. et al. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368–372 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Oberst, A. et al. Catalytic activity of the caspase-8-FLIPL complex inhibits RIPK3-dependent necrosis. Nature 471, 363–367 (2011).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Zhang, H. et al. Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373–376 (2011). This paper along with refs 14 and 15 showed that RIPK3 knockout prevents embryonic lethality of caspase-8 and FADD, revealing the important role of RIPK3 in inhibiting RIPK3 during development.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Welz, P. S. et al. FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330–334 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Bonnet, M. C. et al. The adaptor protein FADD protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572–582 (2011). This paper along with ref. 17 showed for the first time that RIPK3-dependent epithelial cell necroptosis triggers inflammation in the intestine and the skin.

    Article  CAS  PubMed  Google Scholar 

  19. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012). This paper along with ref. 19 identified MLKL as an essential mediator of necroptosis downstream of RIPK3.

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  21. Wang, Z., Jiang, H., Chen, S., Du, F. & Wang, X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Murphy, J. M. et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity 39, 443–453 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Remijsen, Q. et al. Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis. Cell Death Dis. 5, e1004 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tait, S. W. et al. Widespread mitochondrial depletion via mitophagy does not compromise necroptosis. Cell Rep. 5, 878–885 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orozco, S. et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis. Cell Death Differ. 21, 1511–1521 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, X.N. et al. Distinct roles of RIP1-RIP3 hetero- and RIP3-RIP3 homo-interaction in mediating necroptosis. Cell Death Differ. 21, 1709–1720 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cai, Z. et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nature Cell Biol. 16, 55–65 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Chen, X. et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 24, 105–121 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Su, L. et al. A plug release mechanism for membrane permeation by MLKL. Structure 22, 1489–1500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dondelinger, Y. et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 7, 971–981 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Wang, H. et al. Mixed lineage kinase domain-like protein causes necrotic mem-brane disruption upon phosphorylation by RIP3. Mol. Cell 54, 133–146 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Silke, J. & Brink, R. Regulation of TNFRSF and innate immune signalling complexes by TRAFs and cIAPs. Cell Death Differ. 17, 35–45 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003). This study showed that TNFR1-induced inflammatory and apoptotic signalling is mediated by two different signalling complexes that form sequentially at the cell membrane and the cytoplasm.

    Article  CAS  PubMed  Google Scholar 

  34. Kelliher, M. A. et al. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 8, 297–303 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, L., Du, F. & Wang, X. TNF-α induces two distinct caspase-8 activation pathways. Cell 133, 693–703 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Dondelinger, Y. et al. RIPK3 contributes to TNFR1-mediated RIPK1 kinase-dependent apoptosis in conditions of cIAP1/2 depletion or TAK1 kinase inhibition. Cell Death Differ. 20, 1381–1392 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Legarda-Addison, D., Hase, H., O'Donnell, M. A. & Ting, A. T. NEMO/IKKγ regulates an early NF-κB-independent cell-death checkpoint during TNF signaling. Cell Death Differ. 16, 1279–1288 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Yang, S. et al. Pellino3 targets RIP1 and regulates the pro-apoptotic effects of TNF-α. Nature Commun. 4, 2583 (2013).

    Article  ADS  CAS  Google Scholar 

  39. Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449–463 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tenev, T. et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432–448 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Lin, Y., Devin, A., Rodriguez, Y. & Liu, Z. G. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514–2526 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Feng, S. et al. Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell. Signal. 19, 2056–2067 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. O'Donnell, M. A. et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nature Cell Biol. 13, 1437–1442 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Hitomi, J. et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311–1323 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pop, C. et al. FLIPL induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem. J. 433, 447–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, J. V. et al. Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc. Natl Acad. Sci. USA 108, 15312–15317 (2011).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  47. Kang, T. B. et al. Mutation of a self-processing site in caspase-8 compromises its apoptotic but not its nonapoptotic functions in bacterial artificial chromosome-transgenic mice. J. Immunol. 181, 2522–2532 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Wilson, N. S., Dixit, V. & Ashkenazi, A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nature Immunol. 10, 348–355 (2009).

    Article  CAS  Google Scholar 

  49. Geserick, P. et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J. Cell Biol. 187, 1037–1054 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. He, S., Liang, Y., Shao, F. & Wang, X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl Acad. Sci. USA 108, 20054–20059 (2011).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  52. Kaiser, W. J. et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J. Biol. Chem. 288, 31268–31279 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Polykratis, A. et al. Cutting edge: RIPK1 kinase inactive mice are viable and protected from TNF-induced necroptosis in vivo. J. Immunol. 193, 1539–1543 (2014).

    Article  CAS  PubMed  Google Scholar 

  54. Upton, J. W., Kaiser, W. J. & Mocarski, E. S. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe 11, 290–297 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thapa, R. J. et al. Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc. Natl Acad. Sci. USA 110, E3109–E3118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McComb, S. et al. Type-I interferon signaling through ISGF3 complex is required for sustained Rip3 activation and necroptosis in macrophages. Proc. Natl Acad. Sci. USA 111, E3206–E3213 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biton, S. & Ashkenazi, A. NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-α feedforward signaling. Cell 145, 92–103 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Dillon, C. P. et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157, 1189–1202 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaiser, W. J. et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc. Natl Acad. Sci. USA 111, 7753–7758 (2014).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  60. Rickard, J. A. et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell 157, 1175–1188 (2014). This paper, ref. 58 and ref. 59 showed that early postnatal lethality of RIPK1-deficient mice is rescued by double knockout of caspase-8 and RIPK3 and that caspase-8-dependent apoptosis and RIPK3–MLKL-mediated necroptosis differentially contribute to tissue pathologies in RIPK1-deficient pups.

    Article  CAS  PubMed  Google Scholar 

  61. Dannappel, M. et al. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513, 90–94 (2014). This study showed that the kinase-independent function of RIPK1 is essential for intestinal and skin homeostasis by preventing epithelial cell apoptosis and necroptosis.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  62. Takahashi, N. et al. RIPK1 ensures intestinal homeostasis by protecting the epithelium against apoptosis. Nature 513, 95–99 (2014). This study showed that the kinase-independent function of RIPK1 prevents IEC apoptosis.

    Article  CAS  PubMed  ADS  Google Scholar 

  63. Roderick, J. E. et al. Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proc. Natl Acad. Sci. USA 111, 14436–14441 (2014).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  64. Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014). This article along with ref. 53 (and ref. 65) showed that knock-in mice expressing kinase inactive Ripk1 alleles are viable and protected from TNF-induced SIRS.

    Article  CAS  PubMed  Google Scholar 

  65. Newton, K. et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science 343, 1357–1360 (2014). This study showed that RIPK3D161N knock-in mice die during embryogenesis due to caspase-8 dependent apoptosis, suggesting that RIPK3-kinase activity inhibits caspase-8 during development.

    Article  CAS  PubMed  ADS  Google Scholar 

  66. Gentle, I. E. et al. In TNF-stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non-canonical NF-κB and activation of caspase-8. J. Biol. Chem. 286, 13282–13291 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Duprez, L. et al. RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908–918 (2011). This study showed for the first time that TNF-mediated SIRS is RIPK3-dependent and blocked by NEC1.

    Article  CAS  PubMed  Google Scholar 

  68. Lin, J. et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3, 200–210 (2013).

    Article  CAS  PubMed  ADS  Google Scholar 

  69. Sato, K. et al. Receptor interacting protein kinase-mediated necrosis contributes to cone and rod photoreceptor degeneration in the retina lacking interphotoreceptor retinoid-binding protein. J. Neurosci. 33, 17458–17468 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Colbert, L. E. et al. Pronecrotic mixed lineage kinase domain-like protein expression is a prognostic biomarker in patients with early-stage resected pancreatic adenocarcinoma. Cancer 119, 3148–3155 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Mandal, P. et al. RIP3 induces apoptosis independent of pro-necrotic kinase activity. Mol. Cell 56, 481–495 (2014). This study showed that RIPK3K51A knock-in mice are viable and that RIPK3 kinase inhibitors block necroptosis but at high concentrations induce apoptosis, suggesting that RIPK3 conformational changes and not lack of its kinase activity trigger apoptosis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Petersen, S. L. et al. Autocrine TNFα signaling renders human cancer cells sus-ceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12, 445–456 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Vince, J. E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Blander, J. M. A long-awaited merger of the pathways mediating host defence and programmed cell death. Nature Rev. Immunol. 14, 601–618 (2014).

    Article  CAS  Google Scholar 

  76. Mocarski, E. S., Upton, J. W. & Kaiser, W. J. Viral infection and the evolution of caspase 8-regulated apoptotic and necrotic death pathways. Nature Rev. Immunol. 12, 79–88 (2012).

    Article  CAS  Google Scholar 

  77. Christofferson, D. E., Li, Y. & Yuan, J. Control of life-or-death decisions by RIP1 kinase. Annu. Rev. Physiol. 76, 129–150 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Takahashi, N. et al. Necrostatin-1 analogues: critical issues on the specificity, activity and in vivo use in experimental disease models. Cell Death Dis. 3, e437 (2012). This study revealed crucial issues on the specificity and in vivo use of NEC1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Günther, C. et al. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477, 335–339 (2011).

    Article  PubMed  PubMed Central  ADS  CAS  Google Scholar 

  80. Wittkopf, N. et al. Cellular FLICE-like inhibitory protein secures intestinal epithelial cell survival and immune homeostasis by regulating caspase-8. Gastroenterology 145, 1369–1379 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Kovalenko, A. et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J. Exp. Med. 206, 2161–2177 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rajput, A. et al. RIG-I RNA helicase activation of IRF3 transcription factor is negatively regulated by caspase-8-mediated cleavage of the RIP1 protein. Immunity 34, 340–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Weinlich, R. et al. Protective roles for caspase-8 and cFLIP in adult homeostasis. Cell Rep 5, 340–348 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Murakami, Y. et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration. Cell Death Differ. 21, 270–277 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Sharma, A., Matsuo, S., Yang, W. L., Wang, Z. & Wang, P. Receptor-interacting protein kinase 3 deficiency inhibits immune cell infiltration and attenuates organ injury in sepsis. Crit. Care 18, R142 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wu, J. et al. Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23, 994–1006 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vitner, E. B. et al. RIPK3 as a potential therapeutic target for Gaucher's disease. Nature Med. 20, 204–208 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Linkermann, A. et al. Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc. Natl Acad. Sci. USA 110, 12024–12029 (2013).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  89. Lau, A. et al. RIPK3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am. J. Transplant. 13, 2805–2818 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Pavlosky, A. et al. RIPK3-mediated necroptosis regulates cardiac allograft rejection. Am. J. Transplant. 14, 1778–1790 (2014).

    Article  CAS  PubMed  Google Scholar 

  91. Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Kang, R. et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology 146, 1097–1107 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Huang, H. et al. Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: a role for intracellular high-mobility group box 1 in cellular protection. Hepatology 59, 1984–1997 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Yanai, H. et al. Conditional ablation of HMGB1 in mice reveals its protective function against endotoxemia and bacterial infection. Proc. Natl Acad. Sci. USA 110, 20699–20704 (2013).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  95. Vince, J. E. et al. Inhibitor of apoptosis proteins limit RIP3 kinase-dependent interleukin-1 activation. Immunity 36, 215–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Kang, T. B., Yang, S. H., Toth, B., Kovalenko, A. & Wallach, D. Caspase-8 blocks kinase RIPK3-mediated activation of the NLRP3 inflammasome. Immunity 38, 27–40 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Gurung, P. et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J. Immunol. 192, 1835–1846 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Philip, N. H. et al. Caspase-8 mediates caspase-1 processing and innate immune defense in response to bacterial blockade of NF-κB and MAPK signaling. Proc. Natl Acad. Sci. USA 111, 7385–7390 (2014).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  99. Weng, D. et al. Caspase-8 and RIP kinases regulate bacteria-induced innate immune responses and cell death. Proc. Natl Acad. Sci. USA 111, 7391–7396 (2014).

    Article  CAS  PubMed  ADS  PubMed Central  Google Scholar 

  100. Wang, X. et al. RNA viruses promote activation of the NLRP3 inflammasome through a RIP1–RIP3-DRP1 signaling pathway. Nature Immunol. 15, 1126–1133 (2014).

    Article  CAS  Google Scholar 

  101. Moriwaki, K. et al. The necroptosis adaptor RIPK3 promotes injury-induced cytokine expression and tissue repair. Immunity 41, 567–578 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bossaller, L. et al. Cutting edge: FAS (CD95) mediates noncanonical IL-1β and IL-18 maturation via caspase-8 in an RIP3-independent manner. J. Immunol. 189, 5508–5512 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Maelfait, J. et al. Stimulation of Toll-like receptor 3 and 4 induces interleukin-1β maturation by caspase-8. J. Exp. Med. 205, 1967–1973 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Antonopoulos, C., El Sanadi, C., Kaiser, W. J., Mocarski, E. S. & Dubyak, G. R. Proapoptotic chemotherapeutic drugs induce noncanonical processing and release of IL-1β via caspase-8 in dendritic cells. J. Immunol. 191, 4789–4803 (2013).

    Article  CAS  PubMed  Google Scholar 

  105. Liu, T. et al. Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response. Cell Rep. 8, 974–982 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Cullen, S. P. et al. Fas/CD95-induced chemokines can serve as 'find-me' signals for apoptotic cells. Mol. Cell 49, 1034–1048 (2013).

    Article  CAS  PubMed  Google Scholar 

  107. Krysko, D. V. et al. Immunogenic cell death and DAMPs in cancer therapy. Nature Rev. Cancer 12, 860–875 (2012).

    Article  CAS  Google Scholar 

  108. Omori, E. et al. TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J. Biol. Chem. 281, 19610–19617 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Nenci, A. et al. Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum. Mol. Genet. 15, 531–542 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Nenci, A. et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446, 557–561 (2007).

    Article  CAS  PubMed  ADS  Google Scholar 

  111. Kajino-Sakamoto, R. et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J. Immunol. 181, 1143–1152 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Panayotova-Dimitrova, D. et al. cFLIP regulates skin homeostasis and protects against TNF-induced keratinocyte apoptosis. Cell Rep. 5, 397–408 (2013).

    Article  CAS  PubMed  Google Scholar 

  113. Kumari, S. et al. Sharpin prevents skin inflammation by inhibiting TNFR1-induced keratinocyte apoptosis. eLIFE 3, e03422 (2014).

    Article  PubMed Central  Google Scholar 

  114. Rickard, J. et al. TNFR1-dependent cell death drives inflammation in Sharpin-deficient mice. eLIFE 3, e03464 (2014).

    Article  PubMed Central  Google Scholar 

  115. Poon, I. K., Lucas, C. D., Rossi, A. G. & Ravichandran, K. S. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Rev. Immunol. 14, 166–180 (2014).

    Article  CAS  Google Scholar 

  116. Brouckaert, G. et al. Phagocytosis of necrotic cells by macrophages is phosphatidylserine dependent and does not induce inflammatory cytokine production. Mol. Biol. Cell 15, 1089–1100 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nunes, T., Bernardazzi, C. & de Souza, H. S. Cell death and inflammatory bowel diseases: apoptosis, necrosis, and autophagy in the intestinal epithelium. BioMed Res. Int. 2014, 218493 (2014).

    PubMed  PubMed Central  Google Scholar 

  118. Pierdomenico, M. et al. Necroptosis is active in children with inflammatory bowel disease and contributes to heighten intestinal inflammation. Am. J. Gastroenterol. 109, 279–287 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Saito, N. et al. An annexin A1–FPR1 interaction contributes to necroptosis of keratinocytes in severe cutaneous adverse drug reactions. Sci. Transl. Med. 6, 245ra95 (2014).

    Article  PubMed  CAS  Google Scholar 

  120. Gautheron, J. et al. A positive feedback loop between RIP3 and JNK controls non-alcoholic steatohepatitis. EMBO Mol. Med. 6, 1062–1074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Roychowdhury, S., McMullen, M. R., Pisano, S. G., Liu, X. & Nagy, L. E. Absence of receptor interacting protein kinase 3 prevents ethanol-induced liver injury. Hepatology 57, 1773–1783 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Wickman, G. R. et al. Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death Differ. 20, 1293–1305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kazama, H. et al. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29, 21–32 (2008).

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lüthi, A. U. et al. Suppression of interleukin-33 bioactivity through proteolysis by apoptotic caspases. Immunity 31, 84–98 (2009).

    Article  PubMed  CAS  Google Scholar 

  125. Venereau, E. et al. Mutually exclusive redox forms of HMGB1 promote cell recruit-ment or proinflammatory cytokine release. J. Exp. Med. 209, 1519–1528 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologise to all the authors whose work we could not cite in this Review due to space limitations. M.P. acknowledges funding from the European Research Council (2012-ADG_20120314), the German Research Foundation (SFB670, SFB829, SPP1656), the European Commission (Grants 223404 (Masterswitch) and 223151 (InflaCare)), the Deutsche Krebshilfe, the Else Kröner-Fresenius-Stiftung and the Helmholtz Alliance (PCCC). Research in the Vandenabeele unit is supported by Belgian grants (Interuniversity Attraction Poles, IAP 7/32), Flemish grants (Research Foundation Flanders, FWO G.0875.11, FWO G.0973.11 N, FWO G.0A45.12 N, FWO G.0172.12, FWO G.0787.13N, G0C3114N, FWO KAN 31528711 and Foundation against Cancer 2012-188), Gent University grants (MRP, GROUP-ID consortium) and grants from Flanders Institute for Biotechnology (VIB). P.V. holds a Methusalem grant (BOF09/01M00709) from the Flemish Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manolis Pasparakis or Peter Vandenabeele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasparakis, M., Vandenabeele, P. Necroptosis and its role in inflammation. Nature 517, 311–320 (2015). https://doi.org/10.1038/nature14191

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14191

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing