Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From quantum matter to high-temperature superconductivity in copper oxides

Abstract

The discovery of high-temperature superconductivity in the copper oxides in 1986 triggered a huge amount of innovative scientific inquiry. In the almost three decades since, much has been learned about the novel forms of quantum matter that are exhibited in these strongly correlated electron systems. A qualitative understanding of the nature of the superconducting state itself has been achieved. However, unresolved issues include the astonishing complexity of the phase diagram, the unprecedented prominence of various forms of collective fluctuations, and the simplicity and insensitivity to material details of the ‘normal’ state at elevated temperatures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Tc versus time.
Figure 2: Phase diagram.
Figure 3: Crystal structure.
Figure 4: Fermi surface, Fermi arcs and gap functions.

References

  1. Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B 64, 189–193 (1986)

    ADS  CAS  Google Scholar 

  2. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  3. Cohen, M. & Anderson, P. W. Comments on the maximum superconducting transition temperature. In Superconductivity in d- and f-band Metals (ed. Douglas, D. H. ) 17–27 (American Institute of Physics, 1972)

    Google Scholar 

  4. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)

    ADS  CAS  PubMed  Google Scholar 

  5. Varma, C. M., Littlewood, P. B., Schmitt-Rink, S., Abrahams, E. & Ruckenstein, A. E. Phenomenology of the normal state of Cu-O high-temperature superconductors. Phys. Rev. Lett. 63, 1996–1999 (1989)

    ADS  CAS  PubMed  Google Scholar 

  6. Hussey, N. E., Takenaka, K. & Takagi, H. Universality of the Mott-Ioffe-Regel limit of metals. Phil. Mag. 84, 2847–2864 (2004)

    ADS  CAS  Google Scholar 

  7. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Theory of intertwined orders in high temperature superconductors. Preprint at http://arXiv.org/abs/1407.4480 (2014)

  8. Wollman, D. A., Van Harlingen, D. J., Lee, W. C., Ginsberg, D. M. & Leggett, A. J. Experimental determination of the superconducting pairing state in YBCO from the phase coherence of YBCO-Pb dc SQUIDs. Phys. Rev. Lett. 71, 2134–2137 (1993)

    ADS  CAS  PubMed  Google Scholar 

  9. Tsuei, C. C. & Kirtley, J. R. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys. 72, 969–1016 (2000)

    ADS  CAS  Google Scholar 

  10. Scalapino, D. J., Loh, E. & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986)

    ADS  CAS  Google Scholar 

  11. Miyake, K., Schmitt-Rink, S. & Varma, C. M. Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors. Phys. Rev. B 34, 6554–6556 (1986)

    ADS  CAS  Google Scholar 

  12. Béal-Monod, M. T., Bourbonnais, C. & Emery, V. J. Possible superconductivity in nearly antiferromagnetic itinerant fermion systems. Phys. Rev. B 34, 7716–7720 (1986)

    ADS  Google Scholar 

  13. Dahm, T. et al. Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nature Phys. 5, 217–221 (2009)

    ADS  CAS  Google Scholar 

  14. Zaanen, J. Watching rush hour in the world of electrons. Science 315, 1372–1373 (2007)

    CAS  PubMed  Google Scholar 

  15. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987)

    ADS  CAS  PubMed  Google Scholar 

  16. Vaknin, D. et al. Antiferromagnetism in La2CuO4-y . Phys. Rev. Lett. 58, 2802–2805 (1987)

    ADS  CAS  PubMed  Google Scholar 

  17. Chakravarty, S., Halperin, B. I. & Nelson, D. R. Low-temperature behavior of two-dimensional quantum antiferromagnets. Phys. Rev. Lett. 60, 1057–1060 (1988)

    ADS  CAS  PubMed  Google Scholar 

  18. Doiron-Leyraud, N. et al. Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor. Nature 447, 565–568 (2007)First quantum oscillation evidence for a distinct electronic state with a reconstructed Fermi surface, realized in the underdoped copper oxides under intense magnetic fields.

    ADS  CAS  PubMed  Google Scholar 

  19. Sebastian, S. E. et al. Normal-state nodal electronic structure in underdoped high-Tc copper oxides. Nature 511, 61–64 (2014)

    ADS  CAS  PubMed  Google Scholar 

  20. Zaanen, J. & Gunnarsson, O. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B 40, 7391–7394 (1989)

    ADS  CAS  Google Scholar 

  21. Emery, V. J. & Kivelson, S. A. Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597–621 (1993)

    ADS  CAS  Google Scholar 

  22. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995)First evidence from neutron scattering for modulated spin and charge order in underdoped copper oxides.

    ADS  Google Scholar 

  23. Raghu, S., Kivelson, S. A. & Scalapino, D. J. Superconductivity in the repulsive Hubbard model: an asymptotically exact weak-coupling solution. Phys. Rev. B 81, 224505 (2010)

    ADS  Google Scholar 

  24. Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012)A comprehensive review of spin fluctuation pairing theories for superconductivity.

    ADS  CAS  Google Scholar 

  25. Liu, L., Yao, H., Berg, E., White, S. R. & Kivelson, S. A. Phases of the infinite U Hubbard model on square lattices. Phys. Rev. Lett. 108, 126406 (2012)

    ADS  PubMed  Google Scholar 

  26. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006)An overview of strong coupling models of copper oxides from the doped Mott insulator view, focusing on the resonating valence bond picture.

    ADS  CAS  Google Scholar 

  27. Paramekanti, A., Randeria, M. & Trivedi, N. High-T c superconductors: a variational theory of the superconducting state. Phys. Rev. B 70, 054504 (2004)

    ADS  Google Scholar 

  28. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996)Fundamentals of dynamical mean field theory are discussed in this authoritative review.

    ADS  MathSciNet  CAS  Google Scholar 

  29. Stoudenmire, E. M. & White, S. R. Studying two-dimensional systems with the density matrix renormalization group. Annu. Rev. Condens. Matter Phys. 3, 6.1–6.18 (2012)An introduction to density matrix renormalization group studies of two-dimensional materials, including tensor network generalizations.

    Google Scholar 

  30. White, S. R. & Scalapino, D. J. Density matrix renormalization group study of the striped phase in the 2D t-J model. Phys. Rev. Lett. 80, 1272–1275 (1998)

    ADS  CAS  Google Scholar 

  31. Corboz, P., Rice, T. M. & Troyer, M. Competing states in the t-J model: uniform d-wave state versus stripe state. Phys. Rev. Lett. 113, 046402 (2014)

    ADS  CAS  PubMed  Google Scholar 

  32. Le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nature Phys. 7, 725–730 (2011)

    ADS  CAS  Google Scholar 

  33. Dean, M. P. M. et al. Persistence of magnetic excitations in La2-xSrxCuO4 from the undoped insulator to the heavily overdoped non-superconducting metal. Nature Mater. 12, 1019–1023 (2013)

    ADS  CAS  Google Scholar 

  34. Fong, H. F. et al. Spin susceptibility in underdoped YBa2Cu3O6+x . Phys. Rev. B 61, 14773–14786 (2000)

    ADS  CAS  Google Scholar 

  35. Dai, P., Mook, H. A., Hunt, R. D. & Dogan, F. Evolution of the resonance and incommensurate spin fluctuations in superconducting YBa2Cu3O6+x . Phys. Rev. B 63, 054525 (2001)

    ADS  Google Scholar 

  36. Carbotte, J. P., Timusk, T. & Hwang, J. Bosons in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 74, 066501 (2011)

    ADS  Google Scholar 

  37. Anderson, P. W. Is there glue in cuprate superconductors? Science 316, 1705–1707 (2007)

    CAS  PubMed  Google Scholar 

  38. Lanzara, A. et al. Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors. Nature 412, 510–514 (2001)

    ADS  CAS  PubMed  Google Scholar 

  39. Reznik, D. et al. Electron–phonon coupling reflecting dynamic charge inhomogeneity in copper oxide superconductors. Nature 440, 1170–1173 (2006)

    ADS  CAS  PubMed  Google Scholar 

  40. Leggett, A. J. A “midinfrared” scenario for cuprate superconductivity. Proc. Natl Acad. Sci. USA 96, 8365–8372 (1999)

    ADS  CAS  PubMed  Google Scholar 

  41. Abrikosov, A. A. & Gor’kov, L. P. Contribution to the theory of superconducting alloys with paramagnetic impurities. Sov. Phys. JETP 12, 1243–1253 (1961)

    Google Scholar 

  42. Garg, A., Randeria, M. & Trivedi, N. Strong correlations make high-temperature superconductors robust against disorder. Nature Phys. 4, 762–765 (2008)

    ADS  CAS  Google Scholar 

  43. Uemura, Y. J. et al. Universal correlations between Tc and ns/m* in high-Tc cuprate superconductors. Phys. Rev. Lett. 62, 2317–2320 (1989)

    ADS  CAS  PubMed  Google Scholar 

  44. Emery, V. J. & Kivelson, S. A. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374, 434–437 (1995)

    ADS  CAS  Google Scholar 

  45. Chatterjee, U. et al. Electronic phase diagram of high-temperature copper oxide superconductors. Proc. Natl Acad. Sci. USA 108, 9346–9349 (2011)

    ADS  CAS  PubMed  Google Scholar 

  46. Matsui, H. et al. BCS-like Bogoliubov quasiparticles in high-T c superconductors observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 90, 217002 (2003)

    ADS  CAS  PubMed  Google Scholar 

  47. Fedorov, A. V. et al. Temperature dependent photoemission studies of optimally doped Bi2Sr2CaCu2O8 . Phys. Rev. Lett. 82, 2179–2182 (1999)

    ADS  CAS  Google Scholar 

  48. Feng, D. L. et al. Signature of superfluid density in the single-particle excitation spectrum of Bi2Sr2CaCu2O8+δ . Science 289, 277–281 (2000)

    ADS  CAS  PubMed  Google Scholar 

  49. Warren, W. W. et al. Cu spin dynamics and superconducting precursor effects in planes above Tc in YBa2Cu3O6. 7 . Phys. Rev. Lett. 62, 1193–1196 (1989)

    ADS  CAS  PubMed  Google Scholar 

  50. Alloul, H., Ohno, T. & Mendels, P. 89Y NMR evidence for a Fermi-liquid behavior in YBa2Cu3O6+x . Phys. Rev. Lett. 63, 1700–1703 (1989)

    ADS  CAS  PubMed  Google Scholar 

  51. Homes, C. C., Timusk, T., Liang, R., Bonn, D. A. & Hardy, W. N. Optical conductivity of c axis oriented YBa2Cu3O6. 70: evidence for a pseudogap. Phys. Rev. Lett. 71, 1645–1648 (1993)

    ADS  CAS  PubMed  Google Scholar 

  52. Puchkov, A. V., Basov, D. N. & Timusk, T. The pseudogap state in high-Tc superconductors: an infrared study. J. Phys. Condens. Matter 8, 10049–10082 (1996)

    ADS  CAS  Google Scholar 

  53. Bucher, B., Steiner, P., Karpinski, J., Kaldis, E. & Wachter, P. Influence of the spin gap on the normal state transport in YBa2Cu4O8 . Phys. Rev. Lett. 70, 2012–2015 (1993)

    ADS  CAS  PubMed  Google Scholar 

  54. Ito, T., Takenaka, K. & Uchida, S. Systematic deviation from T-linear behavior in the in-plane resistivity of YBa2Cu3O7-y: evidence for dominant spin scattering. Phys. Rev. Lett. 70, 3995–3998 (1993)

    ADS  CAS  PubMed  Google Scholar 

  55. Hashimoto, M. et al. Energy gaps in high-transition-temperature cuprate superconductors. Nature Phys. 10, 483–495 (2014)

    ADS  CAS  Google Scholar 

  56. Norman, M. R. et al. Destruction of the Fermi surface in underdoped high-Tc superconductors. Nature 392, 157–160 (1998)

    ADS  CAS  Google Scholar 

  57. Marshall, D. S. et al. Unconventional electronic structure evolution with hole doping in Bi2Sr2CaCu2O8+δ: angle-resolved photoemission results. Phys. Rev. Lett. 76, 4841–4844 (1996)First indication from photoemission of a pseudogap and reconstructed Fermi surface in underdoped copper oxides.

    ADS  CAS  PubMed  Google Scholar 

  58. Yang, H.-B. et al. Emergence of preformed Cooper pairs from the doped Mott insulating state in Bi2Sr2CaCu2O8+δ . Nature 456, 77–80 (2008)

    ADS  CAS  PubMed  Google Scholar 

  59. Hoffman, J. E. et al. Imaging quasiparticle interference in Bi2Sr2CaCu2O8+δ . Science 297, 1148–1151 (2002)First study of quasiparticle interference in copper oxides obtained from a Fourier transform of scanning tunnelling spectra.

    ADS  CAS  PubMed  Google Scholar 

  60. McElroy, K. et al. Relating atomic-scale electronic phenomena to wave-like quasiparticle states in superconducting Bi2Sr2CaCu2O8+δ . Nature 422, 592–596 (2003)

    ADS  CAS  PubMed  Google Scholar 

  61. Kohsaka, Y. et al. How Cooper pairs vanish approaching the Mott insulator in Bi2Sr2CaCu2O8+δ . Nature 454, 1072–1078 (2008)

    ADS  CAS  PubMed  Google Scholar 

  62. Fujita, K. et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344, 612–616 (2014)

    ADS  CAS  PubMed  Google Scholar 

  63. Vishik, I. M. et al. A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+δ . Nature Phys. 5, 718–721 (2009)

    ADS  CAS  Google Scholar 

  64. Vershinin, M. et al. Local ordering in the pseudogap state of the high-Tc superconductor Bi2Sr2CaCu2O8+δ . Science 303, 1995–1998 (2004)

    ADS  CAS  PubMed  Google Scholar 

  65. Parker, C. V. et al. Fluctuating stripes at the onset of the pseudogap in the high-Tc superconductor Bi2Sr2CaCu2O8+x . Nature 468, 677–680 (2010)

    ADS  CAS  PubMed  Google Scholar 

  66. Howald, C., Eisaki, H., Kaneko, N. & Kapitulnik, A. Coexistence of periodic modulation of quasiparticle states and superconductivity in Bi2Sr2CaCu2O8+δ . Proc. Natl Acad. Sci. USA 100, 9705–9709 (2003)

    ADS  CAS  PubMed  Google Scholar 

  67. da Silva Neto, E. H. et al. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science 343, 393–396 (2014)

    ADS  CAS  PubMed  Google Scholar 

  68. Comin, R. et al. Charge order driven by Fermi-arc instability in Bi2Sr2-xLaxCuO6+δ . Science 343, 390–392 (2014)

    ADS  CAS  PubMed  Google Scholar 

  69. Ding, H. et al. Spectroscopic evidence for a pseudogap in the normal state of underdoped high-Tc superconductors. Nature 382, 51–54 (1996)

    ADS  CAS  Google Scholar 

  70. Loeser, A. G. et al. Excitation gap in the normal state of underdoped Bi2Sr2CaCu2O8+δ . Science 273, 325–329 (1996)

    ADS  CAS  PubMed  Google Scholar 

  71. Corson, J., Mallozzi, R., Orenstein, J., Eckstein, J. N. & Bozovic, I. Vanishing of phase coherence in underdoped Bi2Sr2CaCu2O8+δ . Nature 398, 221–223 (1999)

    ADS  CAS  Google Scholar 

  72. Li, L. et al. Diamagnetism and Cooper pairing above T c in cuprates. Phys. Rev. B 81, 054510 (2010)

    ADS  Google Scholar 

  73. Dubroka, A. et al. Evidence of a precursor superconducting phase at temperatures as high as 180 K in RBa2Cu3O7-δ (R = Y, Gd, Eu) superconducting crystals from infrared spectroscopy. Phys. Rev. Lett. 106, 047006 (2011)

    ADS  CAS  PubMed  Google Scholar 

  74. Kaiser, S. et al. Optically induced coherent transport far above T c in underdoped YBa2Cu3O6+δ . Phys. Rev. B 89, 184516 (2014)

    ADS  Google Scholar 

  75. Norman, M. R. et al. Modeling the Fermi arc in underdoped cuprates. Phys. Rev. B 76, 174501 (2007)

    ADS  Google Scholar 

  76. Reber, T. J. et al. The origin and non-quasiparticle nature of Fermi arcs in Bi2Sr2CaCu2O8+δ . Nature Phys. 8, 606–610 (2012)

    ADS  CAS  Google Scholar 

  77. Lee, J. et al. Spectroscopic fingerprint of phase-incoherent superconductivity in the underdoped Bi2Sr2CaCu2O8+δ . Science 325, 1099–1103 (2009)

    ADS  CAS  PubMed  Google Scholar 

  78. Chakravarty, S., Laughlin, R. B., Morr, D. K. & Nayak, C. Hidden order in the cuprates. Phys. Rev. B 63, 094503 (2001)

    ADS  Google Scholar 

  79. Scalapino, D. J. & White, S. R. Stripe structures in the t-t′-J model. Physica C 481, 146–152 (2012)

    ADS  CAS  Google Scholar 

  80. Tajima, S., Noda, T., Eisaki, H. & Uchida, S. c-Axis optical response in the static stripe ordered phase of the cuprates. Phys. Rev. Lett. 86, 500–503 (2001)

    ADS  CAS  PubMed  Google Scholar 

  81. Li, Q., Hücker, M., Gu, G. D., Tsvelik, A. M. & Tranquada, J. M. Two-dimensional superconducting fluctuations in stripe-ordered La1. 875Ba0. 125CuO4 . Phys. Rev. Lett. 99, 067001 (2007)

    ADS  CAS  PubMed  Google Scholar 

  82. Arai, M. et al. Incommensurate spin dynamics of underdoped superconductor YBa2Cu3O6. 7 . Phys. Rev. Lett. 83, 608–611 (1999)

    ADS  CAS  Google Scholar 

  83. Ulbrich, H. & Braden, M. Neutron scattering studies on stripe phases in non-cuprate materials. Physica C 481, 31–45 (2012)

    ADS  CAS  Google Scholar 

  84. Hinkov, V. et al. Spin dynamics in the pseudogap state of a high-temperature superconductor. Nature Phys. 3, 780–785 (2007)

    ADS  CAS  Google Scholar 

  85. Norman, M. R. Linear response theory and the universal nature of the magnetic excitation spectrum of the cuprates. Phys. Rev. B 75, 184514 (2007)

    ADS  Google Scholar 

  86. Wu, T. et al. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy . Nature 477, 191–194 (2011)

    ADS  CAS  PubMed  Google Scholar 

  87. Tabis, W. et al. Connection between charge-density-wave order and charge transport in the cuprate superconductors. Nature Commun. 5, 5875 (2014)

    ADS  CAS  Google Scholar 

  88. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x . Science 337, 821–825 (2012)Demonstration of charge crystallization without spin order as a generic ordering phenomenon in underdoped copper oxides, using resonant X-ray scattering.

    ADS  CAS  PubMed  Google Scholar 

  89. Chang, J. et al. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6. 67 . Nature Phys. 8, 871–876 (2012)

    ADS  CAS  Google Scholar 

  90. Le Tacon, M. et al. Inelastic X-ray scattering in YBa2Cu3O6. 6 reveals giant phonon anomalies and elastic central peak due to charge-density-wave formation. Nature Phys. 10, 52–58 (2014)

    ADS  CAS  Google Scholar 

  91. Wu, T. et al. Short-range charge order reveals the role of disorder in the pseudogap state of high-Tc superconductors. Preprint at http://arXiv.org/abs/1404.1617 (2014)

  92. Blanco-Canosa, S. et al. Resonant X-ray scattering study of charge density wave correlations in YBa2Cu3O6+x . Phys. Rev. B 90, 054513 (2014)

    ADS  CAS  Google Scholar 

  93. Kivelson, S. A., Fradkin, E. & Emery, V. J. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998)

    ADS  CAS  Google Scholar 

  94. Ando, Y., Segawa, K., Komiya, S. & Lavrov, A. N. Electrical resistivity anisotropy from self-organized one dimensionality in high-temperature superconductors. Phys. Rev. Lett. 88, 137005 (2002)

    ADS  PubMed  Google Scholar 

  95. Daou, R. et al. Broken rotational symmetry in the pseudogap phase of a high-Tc superconductor. Nature 463, 519–522 (2010)

    ADS  CAS  PubMed  Google Scholar 

  96. Hinkov, V. et al. Electronic liquid crystal state in the high-temperature superconductor YBa2Cu3O6. 45 . Science 319, 597–600 (2008)

    CAS  PubMed  Google Scholar 

  97. Kivelson, S. A. et al. How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201–1241 (2003)A pedagogical treatise of electronic charge order and how to study it experimentally.

    ADS  CAS  Google Scholar 

  98. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010)

    ADS  CAS  PubMed  Google Scholar 

  99. da Silva Neto, E. H. et al. Detection of electronic nematicity using scanning tunneling microscopy. Phys. Rev. B 87, 161117 (2013)

    ADS  Google Scholar 

  100. Fauqué, B. et al. Magnetic order in the pseudogap phase of high-Tc superconductors. Phys. Rev. Lett. 96, 197001 (2006)

    ADS  PubMed  Google Scholar 

  101. Varma, C. M. Non-Fermi-liquid states and pairing instability of a general model of copper oxide metals. Phys. Rev. B 55, 14554–14580 (1997)

    ADS  CAS  Google Scholar 

  102. Xia, J. et al. Polar Kerr-effect measurements of the high-temperature YBa2Cu3O6+x superconductor: evidence for broken symmetry near the pseudogap temperature. Phys. Rev. Lett. 100, 127002 (2008)

    ADS  PubMed  Google Scholar 

  103. Martin, S., Fiory, A. T., Fleming, R. M., Schneemeyer, L. F. & Waszczak, J. V. Normal-state transport properties of Bi2+xSr2-yCuO6+δ crystals. Phys. Rev. B 41, 846–849 (1990)

    ADS  CAS  Google Scholar 

  104. Chien, T. R., Wang, Z. Z. & Ong, N. P. Effect of Zn impurities on the normal-state Hall angle in single-crystal YBa2Cu3-xZnxO7-δ . Phys. Rev. Lett. 67, 2088–2091 (1991)

    ADS  CAS  PubMed  Google Scholar 

  105. Valla, T. et al. Temperature dependent scattering rates at the Fermi surface of optimally doped Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 85, 828–831 (2000)

    ADS  CAS  PubMed  Google Scholar 

  106. Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 1999)An authoritative text covering the fundamentals of quantum phase transitions.

    MATH  Google Scholar 

  107. Zaanen, J. Superconductivity: why the temperature is high. Nature 430, 512–513 (2004)

    ADS  CAS  PubMed  Google Scholar 

  108. Tallon, J. L., Williams, G. V. M., Staines, M. P. & Bernhard, C. Energy and length scales in the superconducting phase diagram for HTSC cuprates. Physica C 235–240, 1821–1822 (1994)

    ADS  Google Scholar 

  109. Vishik, I. M. et al. Phase competition in trisected superconducting dome. Proc. Natl Acad. Sci. USA 109, 18332–18337 (2012)

    ADS  CAS  PubMed  Google Scholar 

  110. Ramshaw, B. J. et al. A quantum critical point at the heart of high temperature superconductivity. Preprint at http://arXiv.org/abs/1409.3990 (2014)

  111. Castellani, C., Di Castro, C. & Grilli, M. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett. 75, 4650–4653 (1995)

    ADS  CAS  PubMed  Google Scholar 

  112. Maldacena, J. M. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  113. Zaanen, J., Sun, Y. W., Liu, Y. & Schalm, K. Holographic Duality for Condensed Matter Physics (Cambridge Univ. Press, in the press).A comprehensive but accessible text for condensed matter applications of the AdS/CFT correspondence.

  114. Iqbal, N., Liu, H. & Mezei, M. Lectures on holographic non-Fermi liquids and quantum phase transitions. In String Theory and Its Applications, TASI 2010, (eds Dine, M., Banks, T. & Sachdev, S. ) 707–816 (World Scientific, 2012)

    Google Scholar 

  115. Vignolle, D. et al. Quantum oscillations in an overdoped high-Tc superconductor. Nature 455, 952–955 (2008)

    ADS  CAS  Google Scholar 

  116. Platé, M. et al. Fermi surface and quasiparticle excitations of overdoped Tl2Ba2CuO6+δ . Phys. Rev. Lett. 95, 077001 (2005)

    ADS  PubMed  Google Scholar 

  117. Wakimoto, S. et al. Direct relation between the low-energy spin excitations and superconductivity of overdoped high-T c superconductors. Phys. Rev. Lett. 92, 217004 (2004)

    ADS  CAS  PubMed  Google Scholar 

  118. Le Tacon, M. et al. Dispersive spin excitations in highly overdoped cuprates revealed by resonant inelastic x-ray scattering. Phys. Rev. B 88, 020501 (2013)

    ADS  Google Scholar 

  119. Kaminski, A. et al. Crossover from coherent to incoherent electronic excitations in the normal state of Bi2Sr2CaCu2O8+δ . Phys. Rev. Lett. 90, 207003 (2003)

    ADS  CAS  PubMed  Google Scholar 

  120. Gozar, A. et al. High-temperature interface superconductivity between metallic and insulating copper oxides. Nature 455, 782–785 (2008)

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Yazdani for many discussions. S.A.K. was supported by the US DOE, Basic Energy Sciences, Materials Science and Engineering, under Award No. DE-AC02-76SF00515 at Stanford University. M.N. was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US DOE, Basic Energy Sciences, under Award No. DE-AC0298CH1088. J.Z. acknowledges financial support by the Netherlands Organization for Scientific Research/Ministry of Science and Education (NWO/OCW), and a grant from the Templeton foundation: the opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the text. S.U. prepared the figures.

Corresponding author

Correspondence to J. Zaanen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Keimer, B., Kivelson, S., Norman, M. et al. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015). https://doi.org/10.1038/nature14165

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14165

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing