Letter | Published:

An extremely high-altitude plume seen at Mars’ morning terminator

Nature volume 518, pages 525528 (26 February 2015) | Download Citation

Abstract

The Martian limb (that is, the observed ‘edge’ of the planet) represents a unique window into the complex atmospheric phenomena occurring there. Clouds of ice crystals (CO2 ice or H2O ice) have been observed numerous times by spacecraft and ground-based telescopes, showing that clouds are typically layered and always confined below an altitude of 100 kilometres; suspended dust has also been detected at altitudes up to 60 kilometres during major dust storms1,2,3,4,5,6. Highly concentrated and localized patches of auroral emission controlled by magnetic field anomalies in the crust have been observed at an altitude of 130 kilometres7. Here we report the occurrence in March and April 2012 of two bright, extremely high-altitude plumes at the Martian terminator (the day–night boundary) at 200 to 250 kilometres or more above the surface, and thus well into the ionosphere and the exosphere8,9. They were spotted at a longitude of about 195° west, a latitude of about −45° (at Terra Cimmeria), extended about 500 to 1,000 kilometres in both the north–south and east–west directions, and lasted for about 10 days. The features exhibited day-to-day variability, and were seen at the morning terminator but not at the evening limb, which indicates rapid evolution in less than 10 hours and a cyclic behaviour. We used photometric measurements to explore two possible scenarios and investigate their nature. For particles reflecting solar radiation, clouds of CO2-ice or H2O-ice particles with an effective radius of 0.1 micrometres are favoured over dust. Alternatively, the plume could arise from auroral emission, of a brightness more than 1,000 times that of the Earth’s aurora, over a region with a strong magnetic anomaly where aurorae have previously been detected7. Importantly, both explanations defy our current understanding of Mars’ upper atmosphere.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus 223, 892–941 (2013)

  2. 2.

    et al. The vertical distribution of dust in the Martian atmosphere during northern spring and summer: observations by the Mars Climate Sounder and analysis of zonal average vertical dust profiles. J. Geophys. Res. Planets 116, E04003 (2011)

  3. 3.

    et al. Mapping the mesospheric CO2 clouds on Mars: MEx/OMEGA and MEx/HRSC observations and challenges for atmospheric models. Icarus 209, 452–469 (2010)

  4. 4.

    et al. Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. J. Geophys. Res. 112, E11S90 (2007)

  5. 5.

    et al. Subvisible CO2 ice clouds detected in the mesosphere of Mars. Icarus 183, 403–410 (2006)

  6. 6.

    et al. CRISM limb observations of Mars mesospheric ice clouds: two new results. Proc. Eighth Int. Conf. on Mars, abstr. 1006, (2014)

  7. 7.

    et al. Discovery of an aurora on Mars. Nature 435, 790–794 (2005)

  8. 8.

    in Atmospheres in the Solar System: Comparative Aeronomy (eds , & ) 39–54, 191–202 (American Geophysical Union, 2002)

  9. 9.

    et al. Mars exospheric thermal and non-thermal components: seasonal and local variations. Icarus 221, 682–693 (2012)

  10. 10.

    et al. Mars Reconnaissance Orbiter Mars Color Imager (MARCI): instrument description, calibration, and performance. J. Geophys. Res. 114, E08S92 (2009)

  11. 11.

    et al. The Mars Observer Laser Altimeter investigation. J. Geophys. Res. 97, 7781–7797 (1992)

  12. 12.

    , , , & Radiative habitable zones in Martian polar environments. Icarus 175, 360–371 (2005)

  13. 13.

    Communication in Mars Observations. No. 283 (2003)

  14. 14.

    Martian terminator projections observed by the HST. In Communications in Mars Observations No. 400, (2012)

  15. 15.

    , & Scattering, Absorption and Emission of Light by Small Particles (Cambridge Univ. Press, 2002)

  16. 16.

    Optical constants of carbon dioxide ice. Appl. Opt. 25, 2650–2674 (1986)

  17. 17.

    et al. Evidence for a bimodal size distribution for the suspended aerosol particles on Mars. Icarus 231, 239–260 (2014)

  18. 18.

    , , & The Martian mesosphere as revealed by CO2 cloud observations and general circulation modeling. Icarus 216, 10–22 (2011)

  19. 19.

    et al. Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. J. Geophys. Res. 118, 2105–2123 (2013)

  20. 20.

    , & Condensate clouds in planetary atmospheres: a useful application of the Clausius-Clapeyron equation. Am. J. Phys. 72, 767–774 (2004)

  21. 21.

    et al. Vertical distribution of dust in the Martian atmosphere during northern spring and summer: High-altitude tropical dust maximum at northern summer solstice. J. Geophys. Res. Planets 116, E01007 (2011)

  22. 22.

    , , , & Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res. Planets 118, 746–767 (2013)

  23. 23.

    et al. A global map of Mars’ crustal magnetic field based on electron reflectometry. J. Geophys. Res. 112, E01002 (2007)

  24. 24.

    et al. Observations of aurorae by SPICAM ultraviolet spectrograph on board Mars Express: simultaneous ASPERA-3 and MARSIS measurements. J. Geophys. Res. 113, A08311 (2008)

  25. 25.

    Physics of the Aurora and Airglow, Ch. 4 5 (American Geophysical Union, 2013)

  26. 26.

    SpaceWeatherLife.com (2014)

  27. 27.

    The ionospheric source of the red and green lines of atomic oxygen in the Venus nightglow. Icarus 221, 787–799 (2012)

  28. 28.

    et al. Photoemission phenomena in the Solar System. Space Sci. Rev. 139, 267–310 (2008)

  29. 29.

    , & Lucky imaging: high angular resolution imaging in the visible from the ground. Astron. Astrophys. 446, 739–745 (2006)

  30. 30.

    et al. RegiStax6. (2011)

  31. 31.

    AustoStakkert!2. (2012)

  32. 32.

    The 2010 perihelic opposition of Jupiter observed from Barbados. J. Br. Astron. Assoc. 121, 337–340 (2011)

  33. 33.

    LAIA: Laboratorio de Análisis de Imágenes Astronómicas (Grup d’Estudis Astronòmics, Barcelona, 1998)

  34. 34.

    et al. Mars surface mineralogy from Hubble Space Telescope imaging during 1994-1995: observations, calibration, and initial results. J. Geophys. Res. 102, 9109–9123 (1997)

  35. 35.

    et al. A multi-wavelength study of the 2009 impact on Jupiter: comparison of high-resolution images from Gemini, Keck and HST. Icarus 210, 722–741 (2010)

  36. 36.

    , & The 0.12–2.5 micron absolute flux distribution of the Sun for comparison with solar analog stars. Astron. J. 112, 307–315 (1996)

  37. 37.

    The magnitude and albedo of Mars. Icarus 192, 404–416 (2007)

  38. 38.

    & Pre-conditioned backward Monte Carlo solutions to radiative transport in planetary atmospheres. Fundamentals: sampling of propagation directions in polarising media. Astron. Astrophys. 573, A72 (2015)

  39. 39.

    , , & Photopolarimetry of Martian aerosols. II. Limb and terminator measurements. Astron. Astrophys. 158, 247–258 (1986)

  40. 40.

    & Planetary Sciences 2nd edn (Cambridge Univ. Press, 2010)

Download references

Acknowledgements

This work was supported by the Spanish MINECO project AYA2012-36666, FEDER, Grupos Gobierno Vasco IT765-13 and UPV/EHU UFI11/55. The IAA (CSIC) team was supported by the Spanish MINECO through the CONSOLIDER programme ASTROMOL CSD2009-00038 and AYA2011-30613-CO2-1. F.G.-G. is funded by a CSIC JAE-Doc contract co-financed by the European Social Fund.

Author information

Affiliations

  1. Departamento de Física Aplicada I, ETS Ingeniería, Universidad del País Vasco, Alameda Urquijo s/n, 48013 Bilbao, Spain

    • A. Sánchez-Lavega
    • , E. García-Melendo
    •  & S. Pérez-Hoyos
  2. Unidad Asociada Grupo Ciencias Planetarias UPV/EHU-IAA (CSIC), Alameda Urquijo s/n, 48013 Bilbao, Spain

    • A. Sánchez-Lavega
    • , S. Pérez-Hoyos
    • , M. A. López-Valverde
    •  & F. González-Galindo
  3. European Space Agency, ESTEC, 2201 AZ Noordwijk, The Netherlands

    • A. García Muñoz
  4. Fundació Observatori Esteve Duran, Montseny 46, 08553 Seva (Barcelona), Spain

    • E. García-Melendo
    •  & J. M. Gómez-Forrellad
  5. Commission des Surfaces planétaires, Société Astronomique de France, 3, rue Beethoven, 75016 Paris, France

    • C. Pellier
    •  & M. Delcroix
  6. Instituto de Astrofísica de Andalucía, CSIC, Glorieta de la Astronomia, 3, 18008 Granada, Spain

    • M. A. López-Valverde
    •  & F. González-Galindo
  7. Association of Lunar and Planetary Observers, 200 Lawrence Drive, West Chester, Pennsylvania 19380, USA

    • W. Jaeschke
  8. Association of Lunar and Planetary Observers, 12911 Lerida Street, Coral Gables, Florida 33156, USA

    • D. Parker
  9. Association of Lunar and Planetary Observers, Charleston, 570 Long Point Road STE 230, Mount Pleasant, South Carolina 29464, USA

    • J. Phillips
  10. British Astronomical Association, Burlington House, Piccadilly, London W1J 0DU, UK

    • D. Peach

Authors

  1. Search for A. Sánchez-Lavega in:

  2. Search for A. García Muñoz in:

  3. Search for E. García-Melendo in:

  4. Search for S. Pérez-Hoyos in:

  5. Search for J. M. Gómez-Forrellad in:

  6. Search for C. Pellier in:

  7. Search for M. Delcroix in:

  8. Search for M. A. López-Valverde in:

  9. Search for F. González-Galindo in:

  10. Search for W. Jaeschke in:

  11. Search for D. Parker in:

  12. Search for J. Phillips in:

  13. Search for D. Peach in:

Contributions

A.S.-L. coordinated the study and performed plume measurements, photometric calibration and participated in the models study; A.G.M. studied aurora and together with S.P.-H. performed radiative transfer modelling; E.G.-M. performed with A.S.L. the geometric modelling; M.A.L.-V. and F.G.-G. performed the GCM model calculations and aurora studies, and F.G.-G. performed the evaporation calculations; J.M.G.-F., C.P. and M.D. performed plume measurements; W.J., D. Parker, J.P. and D. Peach performed ground-based images. All authors discussed the results and commented on the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to A. Sánchez-Lavega.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature14162

Further reading

  • Investigations of the Mars Upper Atmosphere with ExoMars Trace Gas Orbiter

    • Miguel A. López-Valverde
    • , Jean-Claude Gerard
    • , Francisco González-Galindo
    • , Ann-Carine Vandaele
    • , Ian Thomas
    • , Oleg Korablev
    • , Nikolai Ignatiev
    • , Anna Fedorova
    • , Franck Montmessin
    • , Anni Määttänen
    • , Sabrina Guilbon
    • , Franck Lefevre
    • , Manish R. Patel
    • , Sergio Jiménez-Monferrer
    • , Maya García-Comas
    • , Alejandro Cardesin
    • , Colin F. Wilson
    • , R. T. Clancy
    • , Armin Kleinböhl
    • , Daniel J. McCleese
    • , David M. Kass
    • , Nick M. Schneider
    • , Michael S. Chaffin
    • , José Juan López-Moreno
    •  & Julio Rodríguez

    Space Science Reviews (2018)

  • Mars: a small terrestrial planet

    • N. Mangold
    • , D. Baratoux
    • , O. Witasse
    • , T. Encrenaz
    •  & C. Sotin

    The Astronomy and Astrophysics Review (2016)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.