Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Predicting climate-driven regime shifts versus rebound potential in coral reefs

Abstract

Climate-induced coral bleaching is among the greatest current threats to coral reefs, causing widespread loss of live coral cover1. Conditions under which reefs bounce back from bleaching events or shift from coral to algal dominance are unknown, making it difficult to predict and plan for differing reef responses under climate change2. Here we document and predict long-term reef responses to a major climate-induced coral bleaching event that caused unprecedented region-wide mortality of Indo-Pacific corals. Following loss of >90% live coral cover, 12 of 21 reefs recovered towards pre-disturbance live coral states, while nine reefs underwent regime shifts to fleshy macroalgae. Functional diversity of associated reef fish communities shifted substantially following bleaching, returning towards pre-disturbance structure on recovering reefs, while becoming progressively altered on regime shifting reefs. We identified threshold values for a range of factors that accurately predicted ecosystem response to the bleaching event. Recovery was favoured when reefs were structurally complex and in deeper water, when density of juvenile corals and herbivorous fishes was relatively high and when nutrient loads were low. Whether reefs were inside no-take marine reserves had no bearing on ecosystem trajectory. Although conditions governing regime shift or recovery dynamics were diverse, pre-disturbance quantification of simple factors such as structural complexity and water depth accurately predicted ecosystem trajectories. These findings foreshadow the likely divergent but predictable outcomes for reef ecosystems in response to climate change, thus guiding improved management and adaptation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recovery and regime shift dynamics on Seychelles coral reefs.
Figure 2: Trajectories in the functional structure of fish assemblages.
Figure 3: Bayesian hierarchical logistic regression of predictor variables for the probability of a regime shift.
Figure 4: Contour biplot of the probability of regime shift (red shading) or recovery (blue shading) based on initial structural complexity and water depth.

Similar content being viewed by others

References

  1. Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010)

    Article  PubMed  Google Scholar 

  3. Goreau, T., McClanahan, T., Hayes, R. & Strong, A. Conservation of coral reefs after the 1998 global bleaching event. Conserv. Biol. 14, 5–15 (2000)

    Article  Google Scholar 

  4. Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Sheppard, C. R. C., Harris, A. & Sheppard, A. L. S. Archipelago-wide coral recovery patterns since 1998 in the Chagos Archipelago, central Indian Ocean. Mar. Ecol. Prog. Ser. 362, 109–117 (2008)

    Article  ADS  Google Scholar 

  6. Hughes, T. P. Catastrophes, phase shifts, and large-scale degradation of a Caribbean coral reef. Science 265, 1547–1551 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012)

    Article  PubMed  Google Scholar 

  9. McCook, L. J. et al. Adaptive management of the Great Barrier Reef: A globally significant demonstration of the benefits of networks of marine reserves. Proc. Natl Acad. Sci. USA 107, 18278–18285 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mora, C. & Sale, P. F. Ongoing global biodiversity loss and the need to move beyond protected areas: a review of the technical and practical shortcomings of protected areas on land and sea. Mar. Ecol. Prog. Ser. 434, 251–266 (2011)

    Article  ADS  Google Scholar 

  11. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999)

    ADS  CAS  PubMed  Google Scholar 

  12. Ateweberhan, M., McClanahan, T. R., Graham, N. A. J. & Sheppard, C. R. C. Episodic heterogeneous decline and recovery of coral cover in the Indian Ocean. Coral Reefs 30, 739–752 (2011)

    Article  ADS  Google Scholar 

  13. Graham, N. A. J. et al. Dynamic fragility of oceanic coral reef ecosystems. Proc. Natl Acad. Sci. USA 103, 8425–8429 (2006)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H. & Bellwood, D. R. A functional approach reveals community responses to disturbances. Trends Ecol. Evol. 28, 167–177 (2013)

    Article  PubMed  Google Scholar 

  15. Chong-Seng, K. M., Graham, N. A. J. & Pratchett, M. S. Bottlenecks to coral recovery in the Seychelles. Coral Reefs 33, 449–461 (2014)

    Article  ADS  Google Scholar 

  16. Smith, J. E. et al. Indirect effects of algae on coral: algae-mediated, microbe-induced coral mortality. Ecol. Lett. 9, 835–845 (2006)

    Article  PubMed  Google Scholar 

  17. Graham, N. A. J. & Nash, K. L. The importance of structural complexity in coral reef ecosystems. Coral Reefs 32, 315–326 (2013)

    Article  ADS  Google Scholar 

  18. Rogers, A., Blanchard, J. L. & Mumby, P. J. Vulnerability of coral reef fisheries to a loss of structural complexity. Curr. Biol. 24, 1000–1005 (2014)

    Article  CAS  PubMed  Google Scholar 

  19. McCook, L. J. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18, 357–367 (1999)

    Article  Google Scholar 

  20. Bridge, T. C. L., Hughes, T. P., Guinotte, J. M. & Bongaerts, P. Call to protect all coral reefs. Nature Climate Change 3, 528–530 (2013)

    Article  ADS  Google Scholar 

  21. Bellwood, D. R., Hughes, T. P., Folke, C. & Nystrom, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Lokrantz, J., Nyström, M., Thyresson, M. & Johansson, C. The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27, 967–974 (2008)

    Article  ADS  Google Scholar 

  23. McClanahan, T. R. et al. Critical thresholds and tangible targets for ecosystem-based management of coral reef fisheries. Proc. Natl Acad. Sci. USA 108, 17230–17233 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lapointe, B. E. Nutrient thresholds for bottom-up control of macroalgal blooms on coral reefs in Jamaica and southeast Florida. Limnol. Oceanogr. 42, 1119–1131 (1997)

    Article  ADS  CAS  Google Scholar 

  25. Atkinson, M. J. & Smith, S. V. C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 26, 1074–1083 (1983)

    Article  ADS  Google Scholar 

  26. Smith, J. E., Smith, C. M. & Hunter, C. L. An experimental analysis of the effects of herbivory and nutrient enrichment on benthic community dynamics on a Hawaiian reef. Coral Reefs 19, 332–342 (2001)

    Article  ADS  Google Scholar 

  27. Burkepile, D. E. et al. Chemically mediated competition between microbes and animals: microbes as consumers in food webs. Ecology 87, 2821–2831 (2006)

    Article  PubMed  Google Scholar 

  28. Selig, E. R. & Bruno, J. F. A global analysis of the effectiveness of marine protected areas in preventing coral loss. PLoS ONE 5, e9278 (2010)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  29. Cinner, J. E. et al. Gear-based fisheries management as a potential adaptive response to climate change and coral mortality. J. Appl. Ecol. 46, 724–732 (2009)

    Article  Google Scholar 

  30. Adger, W. N., Hughes, T. P., Folke, C., Carpenter, S. R. & Rockström, J. Social-ecological resilience to coastal disasters. Science 309, 1036–1039 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151, 1069–1076 (2007)

    Article  Google Scholar 

  32. Graham, N. A. J. et al. Lag effects in the impacts of mass coral bleaching on coral reef fish, fisheries, and ecosystems. Conserv. Biol. 21, 1291–1300 (2007)

    Article  PubMed  Google Scholar 

  33. Letourneur, Y., Kulbicki, M. & Labrosse, P. Length–weight relationship of fishes from coral reefs and lagoons of New Caledonia: an update. Naga, the ICLARM Quarterly 21, 39–46 (1998)

    Google Scholar 

  34. Froese, R. & Pauly, D. FishBase (http://www.fishbase.org) (2011)

    Google Scholar 

  35. Wilson, S. K. et al. Exploitation and habitat degradation as agents of change within coral reef fish communities. Glob. Change Biol. 14, 2796–2809 (2008)

    Article  ADS  Google Scholar 

  36. Burkepile, D. E. et al. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci. Rep. 3, 1493 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ateweberhan, M., Bruggemann, J. H. & Breeman, A. M. Seasonal dynamics of Sargassum ilicifolium (Phaeophyta) on a shallow reef flat in the southern Red Sea (Eritrea). Mar. Ecol. Prog. Ser. 292, 159–171 (2005)

    Article  ADS  Google Scholar 

  38. Umezawa, Y., Miyajima, T., Yamamuro, M., Kayanne, H. & Koike, I. Fine-scale mapping of land-derived nitrogen in coral reefs by δ15N in macroalgae. Limnol. Oceanogr. 47, 1405–1416 (2002)

    Article  ADS  Google Scholar 

  39. Wooldridge, S., Brodie, J. & Furnas, M. Expoure of inner-shelf reefs to nutrient enriched runoff entering the Great Barrier Reef Lagoon: Post-European changes and the design of water quality targets. Mar. Pollut. Bull. 52, 1467–1479 (2006)

    Article  CAS  PubMed  Google Scholar 

  40. Ekebom, J., Laihonen, P. & Suominen, T. A GIS-based step-wise procedure for assessing physical exposure in fragmented archipelagos. Estuar. Coast. Shelf Sci. 57, 887–898 (2003)

    Article  ADS  Google Scholar 

  41. Chollett, I. & Mumby, P. J. Predicting the distribution of Montastrea reefs using wave exposure. Coral Reefs 31, 493–503 (2012)

    Article  ADS  Google Scholar 

  42. Wessel, P. & Smith, W. H. F. GSHHG – A Global Self-consistent, Hierarchical, High-resolution Geography Database. http://www.ngdc.noaa.gov/mgg/shorelines/gshhs.html (2014)

  43. Rohweder, J. et al. Application of wind fetch and wave models for habitat rehabilitation and enhancement projects – 2012 update. http://www.umesc.usgs.gov/management/dss/wind_fetch_wave_models_2012update.html (2012)

  44. Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999)

    Article  Google Scholar 

  45. Nash, K. L., Graham, N. A. J. & Bellwood, D. R. Fish foraging patterns, vulnerability to fishing, and implications for the management of ecosystem function across scales. Ecol. Appl. 23, 1632–1644 (2013)

    Article  PubMed  Google Scholar 

  46. McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006)

    Article  PubMed  Google Scholar 

  47. Legendre, P. & Legendre, L. Numerical Ecology 2nd edn (Elsevier, 1998)

    MATH  Google Scholar 

  48. Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008)

    Article  PubMed  Google Scholar 

  49. Coker, D., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish Biol. Fish. 24, 89–126 (2014)

    Article  Google Scholar 

  50. Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009)

    Article  ADS  Google Scholar 

  51. Fabricius, K. E. Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull. 50, 125–146 (2005)

    Article  CAS  PubMed  Google Scholar 

  52. Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001)

    Article  Google Scholar 

  53. Pratchett, M. S. et al. Effects of climate-induced coral bleaching on coral-reef fishes: ecological and economic consequences. Oceanogr. Mar. Biol. Annu. Rev. 46, 251–296 (2008)

    Google Scholar 

  54. Patil, A. et al. PyMC: Bayesian stochastic modelling in Python. J. Stat. Softw. 35, 1–81 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  55. Cheal, A. J., Emslie, M., MacNeil, M. A., Miller, I. & Sweatman, H. Spatial variation in the functional characteristics of herbivorous fish communities and the resilience of coral reefs. Ecol. Appl. 23, 174–188 (2013)

    Article  PubMed  Google Scholar 

  56. Graham, N. A. J. et al. Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems. PLoS ONE 3, e3039 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wilson, S. K. et al. Exploitation and habitat degradation as agents of change within coral reef fish communities. Glob. Change Biol. 14, 2796–2809 (2008)

    Article  ADS  Google Scholar 

  58. McClanahan, T. R., Ateweberhan, M., Darling, E. S., Graham, N. A. J. & Muthiga, N. A. Biogeography and change among regional coral communities across the western Indian Ocean. PLoS ONE 9, e93385 (2014)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jennings, S., Grandcourt, E. M. & Polunin, N. V. C. The effects of fishing on the diversity, biomass and trophic structure of Seychelles’ reef fish communities. Coral Reefs 14, 225–235 (1995)

    Article  ADS  Google Scholar 

  60. Wilson, S. K. et al. Effect of macroalgal expansion and marine protected areas on coral recovery following a climatic disturbance. Conserv. Biol. 26, 995–1004 (2012)

    Article  PubMed  Google Scholar 

  61. Sheppard, C. R. C., Spalding, M., Bradshaw, C. & Wilson, S. Erosion vs. recovery of coral reefs after 1998 El Niño: Chagos reefs, Indian Ocean. Ambio 31, 40–48 (2002)

    Article  PubMed  Google Scholar 

  62. Mumby, P. J. et al. Empirical relationships among resilience indicators on Micronesian reefs. Coral Reefs 32, 213–226 (2013)

    Article  ADS  Google Scholar 

  63. Cheal, A. J. et al. Coral-macroalgal phase shifts or reef resilience: links with diversity and functional roles of herbivorous fishes on the Great Barrier Reef. Coral Reefs 29, 1005–1015 (2010)

    Article  ADS  Google Scholar 

  64. Burkepile, D. E. & Hay, M. E. Herbivore species richness and feeding complementarity affect community structure and function on a coral reef. Proc. Natl Acad. Sci. USA 105, 16201–16206 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rasher, D. B., Hoey, A. S. & Hay, M. E. Consumer diversity interacts with prey defenses to drive ecosystem function. Ecology 94, 1347–1358 (2013)

    Article  PubMed  Google Scholar 

  66. Mumby, P. J. & Harborne, A. R. Marine reserves enhance the recovery of corals on Caribbean reefs. PLoS ONE 5, e8657 (2010)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  67. Burkepile, D. E. & Hay, M. E. Herbivore vs. nutrient control of marine primary producers: context-dependent effects. Ecology 87, 3128–3139 (2006)

    Article  PubMed  Google Scholar 

  68. Vergés, A., Vanderklift, M. A., Doropoulos, C. & Hyndes, G. A. Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits. PLoS ONE 6, e17115 (2011)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  69. Carpenter, R. C. & Edmunds, P. J. Local and regional scale recovery of Diadema promotes recruitment of scleractinian corals. Ecol. Lett. 9, 271–280 (2006)

    Article  PubMed  Google Scholar 

  70. Madin, J. S. & Connolly, S. R. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature 444, 477–480 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Done, T. J. in Perspectives on Coral Reefs (eds. Barnes, D. J. & Clouston, B. ) Coral zonation, its nature and significance. 107–147 (Australian Institute of Marine Science, 1983)

    Google Scholar 

  72. Larned, S. T. & Atkinson, M. J. Effects of water velocity on NH4 and PO4 uptake and nutrient-limited growth in the macroalga Dictyosphaeria cavernosa. Mar. Ecol. Prog. Ser. 157, 295–302 (1997)

    Article  ADS  CAS  Google Scholar 

  73. Graham, N. A. J. & McClanahan, T. R. The last call for marine wilderness? Bioscience 63, 397–402 (2013)

    Article  Google Scholar 

  74. Graham, N. A. J., Chong-Seng, K. M., Huchery, C., Januchowski-Hartley, F. A. & Nash, K. L. Coral reef community composition in the context of disturbance history on the Great Barrier Reef, Australia. PLoS ONE 9, e101204 (2014)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research was principally supported by the Australian Research Council (DP1094932, DE130101705), the Leverhulme Trust (F/00 125/M), and the Western Indian Ocean Marine Science Association. The Natural Environment Research Council (GR3/1154) funded work in Fiji. We thank the Seychelles Fishing Authority, Seychelles Marine Parks Authority, Nature Seychelles, and Seychelles National Meteorological Services for technical and logistical assistance. Many thanks to N. Polunin for support early in the project, to N. Cariglia for collecting the sea urchin data, to K. Chong-Seng for collecting the juvenile coral data, to C. Huchery for helping develop the wave exposure model, to J. Turner for photos a and b in Extended Data Fig. 1, and T. McClanahan and N. Dulvy for sharing data used in Extended Data Table 3 and Extended Data Fig. 5. J. Cinner, C. Hicks, K. Nash, and three anonymous referees provided useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

N.A.J.G. conceived of the study with S.K.W. and M.A.M.; N.A.J.G. S.J., and S.K.W. collected the data; N.A.J.G., M.A.M., and D.M. developed and implemented the analyses; N.A.J.G. led the manuscript with S.J., M.A.M., D.M., and S.K.W.

Corresponding author

Correspondence to Nicholas A. J. Graham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Changing condition of Seychelles coral reefs.

a, b, Coral reefs of the inner Seychelles were typified by high coral cover and low macroalgal cover in 1994. c, d, The 1998 coral bleaching event caused widespread coral loss, but some reefs maintained their structural complexity (c), while others collapsed (d) by 2005. e, f, In 2011, many reefs had recovered to high live coral cover (e), while others had undergone a regime shift to abundant macroalgal cover (f).

Extended Data Figure 2 Principal components analysis of benthic composition on 21 reefs across the inner Seychelles 1994–2011.

Reefs coloured blue are tracking back to pre-disturbance benthic composition in 2005–2011 following the 1998 bleaching event, whereas reefs coloured red are shifting to alternate benthic compositions, dominated by macroalgae (n = 84).

Extended Data Figure 3 Distance from pre-disturbance benthic community composition.

Euclidian distance in multivariate space, plotted against percent cover of dominant biotic benthic organisms (live coral in blue, macroalgae in red) (n = 63). a, 2005 data. b, 2008 data. c, 2011 data. Shading represents 95% confidence bounds for the mean trend lines of each habitat type.

Extended Data Figure 4 Changing coral and macroalgal cover is relation to pre-disturbance values.

a, Data for recovering reefs, where the change in coral cover compared to 1994 was reducing through time, whereas change in macroalgae remained stable (n = 42). b, Data for regime shifting reefs where the decline in coral cover persisted through time, and changes in macroalgae increased through time (n = 42).

Extended Data Figure 5 Comparison of effect size posterior density distributions for depth and initial structural complexity in predicting coral versus macroalgae outcomes post disturbance in Seychelles versus 6 other countries across the Indo-Pacific.

a, Depth effect size plot, dark blue posterior distribution for Seychelles, grey for other countries (n = 51). b, Initial structural complexity effect size plot, dark blue distribution for Seychelles, green for other countries (n = 14). Depth and structural complexity variables were standardized in both analyses before estimation and all posterior distributions have more than 95% of their density below zero.

Extended Data Figure 6 Collinearity matrix of the eleven predictor variables.

Extended Data Figure 7 Map of study sites around the inner Seychelles.

Sites in blue are recovering from the 1998 mass bleaching event, whereas sites in red have undergone a regime shift to macroalgal cover.

Extended Data Table 1 Coral cover and macroalgal cover at recovering and regime shifting sites in 2011, with the change (based on the model slope) in coral cover and macroalgae estimates from sites between 2005–2011
Extended Data Table 2 Rationale for predictor variables included in models determining different post-disturbance reef trajectories on Seychelles reefs
Extended Data Table 3 Mean values with 95% confidence intervals for predictor covariates in Seychelles compared to other coral reef locations where similar data for the covariates were available

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graham, N., Jennings, S., MacNeil, M. et al. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015). https://doi.org/10.1038/nature14140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing