Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New genetic loci link adipose and insulin biology to body fat distribution

Abstract

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10−8). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regional SNP association plots illustrating the complex genetic architecture at two WHRadjBMI loci.
Figure 2: Gene set enrichment and tissue expression of genes at WHRadjBMI-associated loci (GWAS-only P < 10−5).

Similar content being viewed by others

References

  1. Pischon, T. et al. General and abdominal adiposity and risk of death in Europe. N. Engl. J. Med. 359, 2105–2120 (2008)

    CAS  PubMed  Google Scholar 

  2. Wang, Y., Rimm, E. B., Stampfer, M. J., Willett, W. C. & Hu, F. B. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 81, 555–563 (2005)

    CAS  PubMed  Google Scholar 

  3. Canoy, D. Distribution of body fat and risk of coronary heart disease in men and women. Curr. Opin. Cardiol. 23, 591–598 (2008)

    PubMed  Google Scholar 

  4. Snijder, M. B. et al. Associations of hip and thigh circumferences independent of waist circumference with the incidence of type 2 diabetes: the Hoorn Study. Am. J. Clin. Nutr. 77, 1192–1197 (2003)

    CAS  PubMed  Google Scholar 

  5. Yusuf, S. et al. Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 366, 1640–1649 (2005)

    PubMed  Google Scholar 

  6. Mason, C., Craig, C. L. & Katzmarzyk, P. T. Influence of central and extremity circumferences on all-cause mortality in men and women. Obesity 16, 2690–2695 (2008)

    PubMed  Google Scholar 

  7. Heid, I. M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nature Genet. 42, 949–960 (2010)

    CAS  PubMed  Google Scholar 

  8. Randall, J. C. et al. Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits. PLoS Genet. 9, e1003500 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fox, C. S. et al. Genome-wide association of pericardial fat identifies a unique locus for ectopic fat. PLoS Genet. 8, e1002705 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Fox, C. S. et al. Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women. PLoS Genet. 8, e1002695 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Voight, B. F. et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet. 8, e1002793 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Sanna, S. et al. Common variants in the GDF5-UQCC region are associated with variation in human height. Nature Genet. 40, 198–203 (2008)

    CAS  PubMed  Google Scholar 

  13. Lango Allen, H. et al. Hundreds of variants clustered in genomic loci and biological pathways affect human height. Nature 467, 832–838 (2010)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nature Genet. 44, 369–375 (2012)

    CAS  PubMed  Google Scholar 

  15. Yang, J. et al. Common SNPs explain a large proportion of the heritability for human height. Nature Genet. 42, 565–569 (2010)

    CAS  PubMed  Google Scholar 

  16. Hindorff, L. A. et al. A Catalog of Published Genome-Wide Association Studies. Available at http://www.genome.gov/gwastudies; accessed 31 January 2013

  17. Freathy, R. M. et al. Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nature Genet. 42, 430–435 (2010)

    CAS  PubMed  Google Scholar 

  18. Hoopes, S. L., Willcockson, H. H. & Caron, K. M. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice. PLoS ONE 7, e45261 (2012)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009)

    PubMed  PubMed Central  Google Scholar 

  20. Segrè, A. V., Groop, L., Mootha, V. K., Daly, M. J. & Altshuler, D. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010)

    PubMed  PubMed Central  Google Scholar 

  21. Elias, I., Franckhauser, S. & Bosch, F. New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte 2, 109–112 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pal, A. et al. PTEN mutations as a cause of constitutive insulin sensitivity and obesity. N. Engl. J. Med. 367, 1002–1011 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pers, T. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nature Commun. 6, 5890 (2015)

    CAS  Google Scholar 

  24. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012)

  25. Bernstein, B. E. et al. The NIH Roadmap Epigenomics Mapping Consortium. Nature Biotechnol. 28, 1045–1048 (2010)

    CAS  Google Scholar 

  26. Nakagami, H. The mechanism of white and brown adipocyte differentiation. Diabetes Metab. J. 37, 85–90 (2013)

    PubMed  PubMed Central  Google Scholar 

  27. Li, H. et al. miR-17–5p and miR-106a are involved in the balance between osteogenic and adipogenic differentiation of adipose-derived mesenchymal stem cells. Stem Cell Res. 10, 313–324 (2013)

    CAS  PubMed  ADS  Google Scholar 

  28. Mori, M., Nakagami, H., Rodriguez-Araujo, G., Nimura, K. & Kaneda, Y. Essential role for miR-196a in brown adipogenesis of white fat progenitor cells. PLoS Biol. 10, e1001314 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cao, Y. Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab. 18, 478–489 (2013)

    CAS  PubMed  Google Scholar 

  30. Hagberg, C. E. et al. Vascular endothelial growth factor B controls endothelial fatty acid uptake. Nature 464, 917–921 (2010)

    CAS  PubMed  ADS  Google Scholar 

  31. Zygmunt, T. et al. Semaphorin-PlexinD1 signaling limits angiogenic potential via the VEGF decoy receptor sFlt1. Dev. Cell 21, 301–314 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Shimizu, I. et al. Semaphorin3E-induced inflammation contributes to insulin resistance in dietary obesity. Cell Metab. 18, 491–504 (2013)

    CAS  PubMed  Google Scholar 

  33. Hanada, R. et al. Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nature Med. 10, 1067–1073 (2004)

    CAS  PubMed  Google Scholar 

  34. Huang, X. et al. FGFR4 prevents hyperlipidemia and insulin resistance but underlies high-fat diet induced fatty liver. Diabetes 56, 2501–2510 (2007)

    CAS  PubMed  Google Scholar 

  35. Foti, D. et al. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nature Med. 11, 765–773 (2005)

    CAS  PubMed  Google Scholar 

  36. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature http://dx.doi.org/10.1038/nature14177 (this issue)

  37. Wood, A. R. et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genet. 46, 1173–1186 (2014)

    CAS  PubMed  Google Scholar 

  38. Jääger, K. & Neuman, T. Human dermal fibroblasts exhibit delayed adipogenic differentiation compared with mesenchymal stem cells. Stem Cells Dev. 20, 1327–1336 (2011)

    PubMed  Google Scholar 

  39. Goossens, G. H. et al. Expression of NLRP3 inflammasome and T cell population markers in adipose tissue are associated with insulin resistance and impaired glucose metabolism in humans. Mol. Immunol. 50, 142–149 (2012)

    CAS  PubMed  Google Scholar 

  40. Maynard, L. M. et al. Childhood body composition in relation to body mass index. Pediatrics 107, 344–350 (2001)

    CAS  PubMed  Google Scholar 

  41. Wells, J. C. Sexual dimorphism of body composition. Best Pract. Res. Clin. Endocrinol. Metab. 21, 415–430 (2007)

    PubMed  Google Scholar 

  42. Lovejoy, J. C., Champagne, C. M., de Jonge, L., Xie, H. & Smith, S. R. Increased visceral fat and decreased energy expenditure during the menopausal transition. Int. J. Obes. 32, 949–958 (2008)

    CAS  Google Scholar 

  43. Okada, Y. et al. A genome-wide association study in 19,633 Japanese subjects identified LHX3-QSOX2 and IGF1 as adult height loci. Hum. Mol. Genet. 19, 2303–2312 (2010)

    CAS  PubMed  Google Scholar 

  44. Winkler, T. W. et al. Quality control and conduct of genome-wide association meta-analyses. Nature Protocols 9, 1192–1212 (2014)

    PubMed  PubMed Central  Google Scholar 

  45. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999)

    CAS  PubMed  MATH  Google Scholar 

  46. Buyske, S. et al. Evaluation of the metabochip genotyping array in African Americans and implications for fine mapping of GWAS-identified loci: the PAGE study. PLoS ONE 7, e35651 (2012)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  49. Higgins, J. P. & Thompson, S. G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002)

    PubMed  Google Scholar 

  50. Neale, M. C., Cardon, L. R. &. North Atlantic Treaty Organization. Methodology for Genetic Studies of Twins and Families (Kluwer Academic Publishers, 1992)

  51. Falconer, D. S. Introduction to Quantitative Genetics 3rd edn (Oliver and Boyd, 1990)

    Google Scholar 

  52. Almasy, L. & Blangero, J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Neale, M. C. MX: Statistical Modeling 4th edn (Department of Psychiatry, 1997)

    Google Scholar 

  54. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Frazer, K. A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007)

    CAS  PubMed  ADS  Google Scholar 

  56. Wakefield, J. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. Am. J. Hum. Genet. 81, 208–227 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wellcome Trust Case Control Consortium. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nature Genet. 44, 1294–1301 (2012)

  58. Morris, A. P. et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genet. 44, 981–990 (2012)

    CAS  PubMed  Google Scholar 

  59. Deloukas, P. et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nature Genet. 45, 25–33 (2013)

    CAS  PubMed  Google Scholar 

  60. Ehret, G. B. et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011)

    CAS  PubMed  ADS  Google Scholar 

  61. Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nature Genet. 45, 1274–1283 (2013)

  62. Scott, R. A. et al. Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways. Nature Genet. 44, 991–1005 (2012)

    CAS  PubMed  Google Scholar 

  63. Manning, A. K. et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nature Genet. 44, 659–669 (2012)

    CAS  PubMed  Google Scholar 

  64. Saxena, R. et al. Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge. Nature Genet. 42, 142–148 (2010)

    CAS  PubMed  Google Scholar 

  65. Dastani, Z. et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 8, e1002607 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Pattaro, C. et al. Genome-wide association and functional follow-up reveals new loci for kidney function. PLoS Genet. 8, e1002584 (2012)

    PubMed  PubMed Central  Google Scholar 

  67. Böger, C. A. et al. CUBN is a gene locus for albuminuria. J. Am. Soc. Nephrol. 22, 555–570 (2011)

    PubMed  PubMed Central  Google Scholar 

  68. Stolk, L. et al. Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways. Nature Genet. 44, 260–268 (2012)

    CAS  PubMed  Google Scholar 

  69. Elks, C. E. et al. Thirty new loci for age at menarche identified by a meta-analysis of genome-wide association studies. Nature Genet. 42, 1077–1085 (2010)

    CAS  PubMed  Google Scholar 

  70. Estrada, K. et al. Genome-wide meta-analysis identifies 56 bone mineral density loci and reveals 14 loci associated with risk of fracture. Nature Genet. 44, 491–501 (2012)

    CAS  PubMed  Google Scholar 

  71. Gharavi, A. G. et al. Genome-wide association study identifies susceptibility loci for IgA nephropathy. Nature Genet. 43, 321–327 (2011)

    CAS  PubMed  Google Scholar 

  72. Painter, J. N. et al. Genome-wide association study identifies a locus at 7p15.2 associated with endometriosis. Nature Genet. 43, 51–54 (2011)

    CAS  PubMed  Google Scholar 

  73. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl Acad. Sci. USA 106, 9362–9367 (2009)

    CAS  ADS  PubMed  PubMed Central  Google Scholar 

  74. Kamatani, Y. et al. Genome-wide association study of hematological and biochemical traits in a Japanese population. Nature Genet. 42, 210–215 (2010)

    CAS  PubMed  Google Scholar 

  75. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nature Genet. 42, 1118–1125 (2010)

    CAS  PubMed  Google Scholar 

  76. Sawcer, S. et al. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476, 214–219 (2011)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  77. Wang, K. S., Liu, X. F. & Aragam, N. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr. Res. 124, 192–199 (2010)

    PubMed  Google Scholar 

  78. Cirulli, E. T. et al. Common genetic variation and performance on standardized cognitive tests. Eur. J. Hum. Genet. 18, 815–820 (2010)

    PubMed  PubMed Central  Google Scholar 

  79. Gieger, C. et al. New gene functions in megakaryopoiesis and platelet formation. Nature 480, 201–208 (2011)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  80. Need, A. C. et al. A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Hum. Mol. Genet. 18, 4650–4661 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

  83. The International HapMap Project. Nature 426, 789–796 (2003)

  84. Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006)

    CAS  PubMed  Google Scholar 

  85. 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012)

  86. Feng, J., Liu, T., Qin, B., Zhang, Y. & Liu, X. S. Identifying ChIP-seq enrichment using MACS. Nature Protocols 7, 1728–1740 (2012)

    CAS  PubMed  Google Scholar 

  87. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000)

    CAS  PubMed  Google Scholar 

  88. Mi, H. & Thomas, P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol. Biol. 563, 123–140 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jimenez-Marin, A., Collado-Romero, M., Ramirez-Boo, M., Arce, C. & Garrido, J. J. Biological pathway analysis by ArrayUnlock and Ingenuity Pathway Analysis. BMC Proc. 3, S6 (2009)

    PubMed  PubMed Central  Google Scholar 

  90. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Fehrmann, R. S. et al. Gene expression analysis identified global gene dosage sensitivity in cancer. Nature Genet. 47, 115–125 (2015)

    CAS  PubMed  Google Scholar 

  92. Lage, K. et al. A human phenome-interactome network of protein complexes implicated in genetic disorders. Nature Biotechnol. 25, 309–316 (2007)

    CAS  Google Scholar 

  93. Bult, C. J. et al. Mouse genome informatics in a new age of biological inquiry. IEEE Int. Symposium Bio-Informatics Biomedical Engineering 29–32 (2000)

  94. Croft, D. et al. Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res. 39, D691–D697 (2011)

    CAS  PubMed  Google Scholar 

  95. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012)

    CAS  PubMed  Google Scholar 

  96. Saito, R. et al. A travel guide to Cytoscape plugins. Nature Methods 9, 1069–1076 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the more than 224,000 volunteers who participated in this study. Detailed acknowledgment of funding sources is provided in the Supplementary Note.

Author information

Authors and Affiliations

Authors