Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stable gold(III) catalysts by oxidative addition of a carbon–carbon bond

Abstract

Low-valent late transition-metal catalysis has become indispensable to chemical synthesis, but homogeneous high-valent transition-metal catalysis is underdeveloped, mainly owing to the reactivity of high-valent transition-metal complexes and the challenges associated with synthesizing them. Here we report a carbon–carbon bond cleavage at ambient conditions by a Au(i) complex that generates a stable Au(iii) cationic complex. In contrast to the well-established soft and carbophilic Au(i) catalyst, this Au(iii) complex exhibits hard, oxophilic Lewis acidity. For example, we observed catalytic activation of α,β-unsaturated aldehydes towards selective conjugate additions as well as activation of an unsaturated aldehyde-allene for a [2 + 2] cycloaddition reaction. The origin of the regioselectivity and catalytic activity was elucidated by X-ray crystallographic analysis of an isolated Au(iii)-activated cinnamaldehyde intermediate. The concepts revealed suggest a strategy for accessing high-valent transition-metal catalysis from readily available precursors.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Routes to high-valent metal complexes.
Figure 2: Accessing Au(iii) via oxidative addition of a carbon–carbon bond.
Figure 3: Examples of selective Au(iii)-catalysed 1,4-additions.
Figure 4: Remote selectivity in Au(iii)-catalysed additions to dienals.
Figure 5
Figure 6: A model for the obtained selectivity.

References

  1. 1

    Hickman, A. J. & Sanford, M. S. High-valent organometallic copper and palladium in catalysis. Nature 484, 177–185 (2012)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Furuya, T., Kamlet, A. S. & Ritter, T. Catalysis for fluorination and trifluoromethylation. Nature 473, 470–477 (2011)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Lee, E. et al. A fluoride-derived electrophilic late-stage fluorination reagent for PET imaging. Science 334, 639–642 (2011)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Furuya, T. et al. Mechanism of C-F reductive elimination from palladium(IV) fluorides. J. Am. Chem. Soc. 132, 3793–3807 (2010)

    CAS  Article  Google Scholar 

  5. 5

    Whitfield, S. R. & Sanford, M. S. Reactivity of Pd(II) complexes with electrophilic chlorinating reagents: Isolation of Pd(IV) products and observation of C−Cl bond-forming reductive elimination. J. Am. Chem. Soc. 129, 15142–15143 (2007)

    CAS  Article  Google Scholar 

  6. 6

    Alsters, P. L. et al. Rigid five- and six-membered C,N,N′-bound aryl-, benzyl-, and alkylorganopalladium complexes: sp2 vs. sp3 carbon-hydrogen activation during cyclopalladation and palladium(IV) intermediates in oxidative addition reactions with dihalogens and alkyl halides. Organometallics 12, 1831–1844 (1993)

    CAS  Article  Google Scholar 

  7. 7

    Wang, Y.-M., Lackner, A. D. & Toste, F. D. Development of catalysts and ligands for enantioselective gold catalysis. Acc. Chem. Res. 47, 889–901 (2014)

    CAS  Article  Google Scholar 

  8. 8

    Krause, N. & Winter, C. Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. Chem. Rev. 111, 1994–2009 (2011)

    CAS  Article  Google Scholar 

  9. 9

    Corma, A., Leyva-Pérez, A. & Sabater, M. J. Gold-catalyzed carbon-heteroatom bond-forming reactions. Chem. Rev. 111, 1657–1712 (2011)

    CAS  Article  Google Scholar 

  10. 10

    Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science 317, 496–499 (2007)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Gorin, D. J. & Toste, F. D. Relativistic effects in homogeneous gold catalysis. Nature 446, 395–403 (2007)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Schmidbaur, H. & Schier, A. Gold(III) compounds for homogeneous catalysis: preparation, reaction conditions, and scope of application. Arabian J. Sci. Eng. 37, 1187–1225 (2012)

    CAS  Article  Google Scholar 

  13. 13

    Oliver-Meseguer, J. et al. Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Science 338, 1452–1455 (2012)

    CAS  ADS  Article  Google Scholar 

  14. 14

    Leyva-Pérez, A. & Corma, A. Similarities and differences between the “relativistic” triad gold, platinum, and mercury in catalysis. Angew. Chem. Int. Ed. 51, 614–635 (2012)

    Article  Google Scholar 

  15. 15

    Gaillard, S. et al. Synthetic and structural studies of [AuCl3(NHC)] complexes. Organometallics 29, 394–402 (2010)

    CAS  Article  Google Scholar 

  16. 16

    de Frémont, P., Singh, R., Stevens, E. D., Petersen, J. L. & Nolan, S. P. Synthesis, characterization and reactivity of N-heterocyclic carbene gold(III) complexes. Organometallics 26, 1376–1385 (2007)

    Article  Google Scholar 

  17. 17

    Hashmi, A. S. K., Blanco, M. C., Fischer, D. & Bats, J. W. Gold catalysis: evidence for the in situ reduction of gold(III) During the cyclization of allenyl carbinols. Eur. J. Org. Chem. 1387–1389 (2006)

  18. 18

    Wolf, W. J., Winston, M. S. & Toste, F. D. Exceptionally fast carbon–carbon bond reductive elimination from gold(III). Nature Chem. 6, 159–164 (2013)

    ADS  Article  Google Scholar 

  19. 19

    Vicente, J., Bermúdez, M.-D., Carrión, F.-J. & Jones, P. G. Synthesis and reactivity of some nitroaryl complexes of HgII and AuIII — synthesis of a substituted biphenyl by C–C coupling-crystal structure of [Hg(C6H4NO2-3,OnBu-6)2]. Chem. Ber. 129, 1395–1399 (1996)

    CAS  Article  Google Scholar 

  20. 20

    Roşca, D.-A., Smith, D. A., Hughes, D. L. & Bochmann, M. A thermally stable gold(III) hydride: synthesis, reactivity, and reductive condensation as a route to gold(II) complexes. Angew. Chem. Int. Ed. 51, 10643–10646 (2012)

    Article  Google Scholar 

  21. 21

    Hashmi, A. S. K. Fire and ice: a gold(III) monohydride. Angew. Chem. Int. Ed. 51, 12935–12936 (2012)

    CAS  Article  Google Scholar 

  22. 22

    Usón, R., Vicente, J., Cirac, J. A. & Chicote, M. T. Synthesis and reactivity of dibenzometallole complexes of gold(III) and platinum(II). J. Organomet. Chem. 198, 105–112 (1980)

    Article  Google Scholar 

  23. 23

    Pyykkö, P. & Runeberg, N. Comparative theoretical study of N-heterocyclic carbenes and other ligands bound to AuI. Chem. Asian J. 1, 623–628 (2006)

    Article  Google Scholar 

  24. 24

    Jones, W. D. Mechanistic studies of transition metal-mediated C–C bond activation. Top. Curr. Chem. 346, 1–31 (2013)

    Article  Google Scholar 

  25. 25

    Perthuisot, C. et al. Cleavage of the carbon–carbon bond in biphenylene using transition metals. J. Mol. Catal. Chem. 189, 157–168 (2002)

    CAS  Article  Google Scholar 

  26. 26

    Darmon, J. M. et al. Oxidative addition of carbon–carbon bonds with a redox-active bis(imino)pyridine iron complex. J. Am. Chem. Soc. 134, 17125–17137 (2012)

    CAS  Article  Google Scholar 

  27. 27

    Levin, L. D. & Toste, F. D. Gold-catalyzed allylation of aryl boronic acids: accessing cross-coupling reactivity with gold. Angew. Chem. Int. Ed. 53, 6211–6215 (2014)

    CAS  Article  Google Scholar 

  28. 28

    Fackler, J. P., Jr Metal-metal bond formation in the oxidative addition to dinuclear gold(I) species. Implications from dinuclear and trinuclear gold chemistry for the oxidative addition process generally. Polyhedron 16, 1–17 (1997)

    CAS  Article  Google Scholar 

  29. 29

    Guenther, J. et al. Activation of aryl halides at gold(I): practical synthesis of (P,C) cyclometalated gold(III) complexes. J. Am. Chem. Soc. 136, 1778–1781 (2014)

    CAS  Article  Google Scholar 

  30. 30

    Joost, M. et al. Facile oxidative addition of aryl iodides to gold(I) by ligand design: bending turns on reactivity. J. Am. Chem. Soc. 136, 14654–14657 (2014)

    CAS  Article  Google Scholar 

  31. 31

    Weber, S. G., Rominger, F. & Straub, B. F. Isolated silver intermediate of gold precatalyst activation. Eur. J. Inorg. Chem. 2863–2867 (2012)

  32. 32

    North, M., Usanov, D. L. & Young, C. Lewis acid catalyzed asymmetric cyanohydrin synthesis. Chem. Rev. 108, 5146–5226 (2008)

    CAS  Article  Google Scholar 

  33. 33

    Yamamoto, H. (ed.) Lewis Acids in Organic Synthesis 1–995 (Wiley, 2000)

  34. 34

    Mahrwald, R. Diastereoselection in Lewis-acid-mediated aldol reactions. Chem. Rev. 99, 1095–1120 (1999)

    CAS  Article  Google Scholar 

  35. 35

    Maruoka, K., Imoto, H., Saito, S. & Yamamoto, H. Virtually complete blocking of α,β-unsaturated aldehyde carbonyls by complexation with aluminum tris(2,6-diphenylphenoxide). J. Am. Chem. Soc. 116, 4131–4132 (1994)

    CAS  Article  Google Scholar 

  36. 36

    Hadfield, M. S. & Lee, A.-L. Gold(I)-catalyzed synthesis of conjugated trienes. Chem. Commun. 47, 1333–1335 (2011)

    CAS  Article  Google Scholar 

  37. 37

    Akagawa, K., Nishi, N., Sen, J. & Kudo, K. Peptide-catalyzed consecutive 1,6- and 1,4-additions of thiols to α,β,γ,δ-unsaturated aldehydes. Org. Biomol. Chem. 12, 3581–3585 (2014)

    CAS  Article  Google Scholar 

  38. 38

    Akagawa, K., Sen, J. & Kudo, K. Peptide-catalyzed regio- and enantioselective reduction of α,β,γ,δ-diunsaturated aldehydes. Angew. Chem. Int. Ed. 52, 11585–11588 (2013)

    CAS  Article  Google Scholar 

  39. 39

    Ahrendt, K. A., Borths, C. J. & MacMillan, D. W. C. New strategies for organic synthesis: the first highly enantioselective organocatalytic Diels-Alder reaction. J. Am. Chem. Soc. 122, 4243–4244 (2000)

    CAS  Article  Google Scholar 

  40. 40

    Hayashi, Y., Okamura, D., Umemiya, S. & Uchimaru, T. Organocatalytic 1,4-addition reaction of α,β,γ,δ-diunsaturated aldehydes versus 1,6-addition reaction. ChemCatChem 4, 959–962 (2012)

    CAS  Article  Google Scholar 

  41. 41

    Alcaide, B., Almendros, P. & Arancillo, C. Exploiting [2 + 2] cycloaddition chemistry: achievements with allenes. Chem. Soc. Rev. 39, 783–816 (2010)

    CAS  Article  Google Scholar 

  42. 42

    Hashmi, A. S. K. et al. On homogeneous gold/palladium catalytic systems. Adv. Synth. Catal. 354, 133–147 (2012)

    CAS  Article  Google Scholar 

  43. 43

    Livendahl, M., Goehry, C., Maseras, F. & Echavarren, A. M. Rationale for the sluggish oxidative addition of aryl halides to Au(I). Chem. Commun. 50, 1533–1536 (2014)

    CAS  Article  Google Scholar 

  44. 44

    Hashmi, A. S. K., Frost, T. M. & Bats, J. W. Highly selective gold-catalyzed arene synthesis. J. Am. Chem. Soc. 122, 11553–11554 (2000)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the NIHGMS (RO1 GM073932) for financial support. C.-Y.W. thanks the Taiwan National Science Council for a postdoctoral fellowship (2011-2012). T.H. thanks the Uehara Memorial Foundation for a postdoctoral fellowship. C.B.J. is grateful to the Lundbeck Foundation for a postdoctoral fellowship. We thank A. DiPasquale (at the College of Chemistry X-ray Crystallography Facility of the University of California, Berkeley) for X-ray crystallographic data collection and we acknowledge support from the NIH Shared Instrumentation Grant S10-RR027172. We thank H.-J. Liu for his generous donation of the biphenylene.

Author information

Affiliations

Authors

Contributions

C.-Y.W. initiated and developed the organometallic study. C.-Y.W. and T.H. developed the Lewis-acid catalysis. C.-Y.W., T.H. and C.B.J. optimized the Lewis-acid catalysis study. C.-Y.W., T.H. and C.B.J. performed the experiments. C.-Y.W., T.H. and C.B.J. and F.D.T. wrote the manuscript.

Corresponding author

Correspondence to F. Dean Toste.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

X-ray crystallographic data have been deposited in the Cambridge Crystallographic Data Centre database (http://www.ccdc.cam.ac.uk/) under code CCDC 1002525-1002527.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Figures 1-5, Supplementary Tables 1-20 and Supplementary References. (PDF 23602 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, CY., Horibe, T., Jacobsen, C. et al. Stable gold(III) catalysts by oxidative addition of a carbon–carbon bond. Nature 517, 449–454 (2015). https://doi.org/10.1038/nature14104

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing