Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct observation of electron propagation and dielectric screening on the atomic length scale

Abstract

The propagation and transport of electrons in crystals is a fundamental process pertaining to the functioning of most electronic devices. Microscopic theories describe this phenomenon as being based on the motion of Bloch wave packets1. These wave packets are superpositions of individual Bloch states with the group velocity determined by the dispersion of the electronic band structure near the central wavevector in momentum space1. This concept has been verified experimentally in artificial superlattices by the observation of Bloch oscillations2—periodic oscillations of electrons in real and momentum space. Here we present a direct observation of electron wave packet motion in a real-space and real-time experiment, on length and time scales shorter than the Bloch oscillation amplitude and period. We show that attosecond metrology3 (1 as = 10−18 seconds) now enables quantitative insight into weakly disturbed electron wave packet propagation on the atomic length scale without being hampered by scattering effects, which inevitably occur over macroscopic propagation length scales. We use sub-femtosecond (less than 10−15 seconds) extreme-ultraviolet light pulses3 to launch photoelectron wave packets inside a tungsten crystal that is covered by magnesium films of varied, well-defined thicknesses of a few ångströms4. Probing the moment of arrival of the wave packets at the surface with attosecond precision reveals free-electron-like, ballistic propagation behaviour inside the magnesium adlayer—constituting the semi-classical limit of Bloch wave packet motion. Real-time access to electron transport through atomic layers and interfaces promises unprecedented insight into phenomena that may enable the scaling of electronic and photonic circuits to atomic dimensions. In addition, this experiment allows us to determine the penetration depth of electrical fields at optical frequencies at solid interfaces on the atomic scale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spatio-temporal dynamics in attosecond photoemission from Mg/W(110).
Figure 2: Attosecond time-resolved photoemission from Mg/W(110).
Figure 3: Atomic-scale photoelectron transport and screening of the incident light field.

References

  1. 1

    Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555–600 (1929)

    ADS  Article  Google Scholar 

  2. 2

    Leo, K., Bolivar, P. H., Brüggemann, F., Schwedler, R. & Köhler, K. Observation of Bloch oscillations in a semiconductor superlattice. Solid State Commun. 84, 943–946 (1992)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Schiller, F., Heber, M., Servedio, V. D. P. & Laubschat, C. Electronic structure of Mg: from monolayers to bulk. Phys. Rev. B 70, 125106 (2004)

    ADS  Article  Google Scholar 

  5. 5

    Gremillet, L. et al. Time-resolved observation of ultrahigh intensity laser-produced electron jets propagating through transparent solid targets. Phys. Rev. Lett. 83, 5015–5018 (1999)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Sha, W., Norris, T. B., Schaff, W. J. & Meyer, K. E. Time-resolved ballistic acceleration of electrons in a GaAs quantum-well structure. Phys. Rev. Lett. 67, 2553–2556 (1991)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Sha, W., Rhee, J.-k., Member, S., Norris, T. B. & Schaff, W. J. Transient carrier and field dynamics in quantum- well parallel transport: from the ballistic to the quasi-equilibrium regime. IEEE J. Quantum Electron. 28, 2445–2455 (1992)

    ADS  Article  Google Scholar 

  8. 8

    Shaner, E. & Lyon, S. Picosecond time-resolved two-dimensional ballistic electron transport. Phys. Rev. Lett. 93, 037402 (2004)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Cavalieri, A. L. et al. Attosecond spectroscopy in condensed matter. Nature 449, 1029–1032 (2007)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Neppl, S. et al. Attosecond time-resolved photoemission from core and valence states of magnesium. Phys. Rev. Lett. 109, 22–26 (2012)

    Article  Google Scholar 

  11. 11

    Schultze, M. et al. Delay in photoemission. Science 328, 1658–1662 (2010)

    ADS  CAS  Article  Google Scholar 

  12. 12

    Aballe, L., Barinov, A., Locatelli, A., Mentes, T. O. & Kiskinova, M. Initial stages of heteroepitaxial Mg growth on W(110): early condensation, anisotropic strain, and self-organized patterns. Phys. Rev. B 75, 115411 (2007)

    ADS  Article  Google Scholar 

  13. 13

    Mahan, G. D. Theory of photoemission in simple metals. Phys. Rev. B 2, 4334–4350 (1970)

    ADS  Article  Google Scholar 

  14. 14

    Berglund, C. N. & Spicer, W. E. Photoemission studies of copper and silver: theory. Phys. Rev. 136, A1030–A1044 (1964)

    ADS  Article  Google Scholar 

  15. 15

    Feibelman, P. J. & Eastman, D. E. Photoemission spectroscopy—correspondence between quantum theory and experimental phenomenology. Phys. Rev. B 10, 4932–4947 (1974)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Borisov, G., Sánchez-Portal, D., Kazansky, K. & Echenique, P. M. Resonant and nonresonant processes in attosecond streaking from metals. Phys. Rev. B 87, 121110 (2013)

    ADS  Article  Google Scholar 

  17. 17

    Krasovskii, E. E. Attosecond spectroscopy of solids: streaking phase shift due to lattice scattering. Phys. Rev. B 84, 195106 (2011)

    ADS  Article  Google Scholar 

  18. 18

    Liao, Q. & Thumm, U. Attosecond time-resolved photoelectron dispersion and photoemission time delays. Phys. Rev. Lett. 112, 023602 (2014)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Kazansky, A. K. & Echenique, P. M. One-electron model for the electronic response of metal surfaces to subfemtosecond photoexcitation. Phys. Rev. Lett. 102, 177401 (2009)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Zhang, C. H. & Thumm, U. Attosecond photoelectron spectroscopy of metal surfaces. Phys. Rev. Lett. 102, 123601 (2009)

    ADS  Article  Google Scholar 

  21. 21

    Zhang, C. H. & Thumm, U. Effect of wave-function localization on the time delay in photoemission from surfaces. Phys. Rev. A 84, 033401 (2011)

    ADS  Article  Google Scholar 

  22. 22

    Lemell, C., Solleder, B., Tökési, K. & Burgdörfer, J. Simulation of attosecond streaking of electrons emitted from a tungsten surface. Phys. Rev. A 79, 62901 (2009)

    ADS  Article  Google Scholar 

  23. 23

    Zhang, C. H. & Thumm, U. Probing dielectric-response effects with attosecond time-resolved streaked photoelectron spectroscopy of metal surfaces. Phys. Rev. A 84, 1–7 (2011)

    Google Scholar 

  24. 24

    Vinogradov, N., Marchenko, D., Shikin, A., Adamchuk, V. & Rader, O. Size effects in ultrathin Mg/W(110) films: quantum electronic states. Phys. Solid State 51, 179–188 (2009)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Kroemer, H. On the group velocity of Bloch waves. Proc. IEEE 63, 988 (1975)

    Article  Google Scholar 

  26. 26

    Bartynski, R. A., Gaylord, R. H., Gustafsson, T. & Plummer, E. W. Angle-resolved photoemission study of the surface and bulk electronic structure of Mg(0001) and Mg(112-bar0). Phys. Rev. B 33, 3644–3665 (1986)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range. Surf. Interf. Anal. 43, 689–713 (2011)

    CAS  Article  Google Scholar 

  28. 28

    Lang, N. D. & Kohn, W. Theory of metal surfaces: induced surface charge and image potential. Phys. Rev. B 7, 3541–3550 (1973)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Liebsch, A. Electronic screening at metal surfaces and the connection with physical phenomena. Phys. Scr. 35, 354 (1987)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Wachter, G. et al. Electron rescattering at metal nanotips induced by ultrashort laser pulses. Phys. Rev. B 86, 035402 (2012)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Munich-Centre for Advanced Photonics. C.L., G.W. and J.B. acknowledge support by the FWF special research programs SFB-041 (ViCoM) and SFB-049 (NextLite) and project P21141-N16. G.W. is supported by the International Max Planck Research School for Advanced Photon Science (IMPRS-APS). R.K. acknowledges an ERC Starting Grant. Calculations have been performed on the Vienna Scientific Cluster. S.N. and P.F. thank the Helmholtz Zentrum Berlin for support. We thank P. Echenique, E. E. Krasovskii, A. Kazansky and A. D. Sanchez-Portal for discussions.

Author information

Affiliations

Authors

Contributions

S.N. conceived the material system for this study and performed preparatory experiments. S.N., A.L.C., P.F., E.M., R.E. and R.K. designed and developed the experiment. S.N., R.E. and A.L.C. performed the measurements (with the assistance of E.M., M.J. and E.M.B.). S.N. and R.E. analysed the data. C.L. and S.N. performed the ballistic electron simulations. G.W. and C.L. performed the TDDFT calculations. M.H. and U.K. developed and prepared the XUV multilayer optics. S.N., R.E., C.L., J.B. and R.K. wrote the manuscript with input from the other authors. R.K. and F.K. initiated the project and R.K., F.K. and P.F. supervised the project. All authors discussed the results and conclusions drawn from them.

Corresponding authors

Correspondence to S. Neppl or R. Kienberger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-7, Supplementary Table 1 and Supplementary References. (PDF 1351 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neppl, S., Ernstorfer, R., Cavalieri, A. et al. Direct observation of electron propagation and dielectric screening on the atomic length scale. Nature 517, 342–346 (2015). https://doi.org/10.1038/nature14094

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links