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            Abstract
Endocytosis is required for internalization of micronutrients and turnover of membrane components. Endophilin has been assigned as a component of clathrin-mediated endocytosis. Here we show in mammalian cells that endophilin marks and controls a fast-acting tubulovesicular endocytic pathway that is independent of AP2 and clathrin, activated upon ligand binding to cargo receptors, inhibited by inhibitors of dynamin, Rac, phosphatidylinositol-3-OH kinase, PAK1 and actin polymerization, and activated upon Cdc42 inhibition. This pathway is prominent at the leading edges of cells where phosphatidylinositol-3,4-bisphosphateâ€”produced by the dephosphorylation of phosphatidylinositol-3,4,5-triphosphate by SHIP1 and SHIP2â€”recruits lamellipodin, which in turn engages endophilin. This pathway mediates the ligand-triggered uptake of several G-protein-coupled receptors such as Î±2a- and Î²1-adrenergic, dopaminergic D3 and D4 receptors and muscarinic acetylcholine receptor 4, the receptor tyrosine kinases EGFR, HGFR, VEGFR, PDGFR, NGFR and IGF1R, as well as interleukin-2 receptor. We call this new endocytic route fast endophilin-mediated endocytosis (FEME).
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                    Figure 1: Clathrin-independent, endophilin-dependent endocytosis of GPCR.


Figure 2: Endocytosis of RTKs by the FEME pathway.


Figure 3: IL-2R endocytosis by the FEME pathway.


Figure 4: Regulation of the FEME endocytic pathway.


Figure 5: PtdIns(3,4)P2 recruits lamellipodin, which in turn engages endophilin at leading edges of cells.
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Extended data figures and tables

Extended Data Figure 1 Endophilin binds to some GPCRs and is dispensable for clathrin-mediated endocytosis.
Related to Fig. 1. a, Quantification of the binding of indicated cytosolic fragments of adrenergic, dopaminergic, serotoninergic, muscarinic (Muscar.) and histaminergic (Histam.) receptors (see Fig. 1a for an example of one set of immunoblots) to the indicated GSTâ€“SH3 domains (or GST as control). The percentage enrichment of receptor tails in pulled-down fractions with respect to their respective levels in the original cell extracts (input) is shown (meanÂ Â±Â s.e.m., n = 3 independent experiments). b, Binding of GSTâ€“SH3 domains from BAR and F-BAR containing proteins to Î²1-AR third intracellular loop (TIL), showing specificity for endophilin-A SH3 domains. c, Pull-down experiments using GSTâ€“SH3 domains of endophilin-A2 (or GST as a control) with EGFP-tagged fragments coding for the TILs of the indicated receptors bearing the depicted mutations. Mutations decreasing binding are shown in red; the ones without significant effects are in blue. ALIX PRD domain and its R757E mutant58 were used as positive and negative controls. d, Amino acid sequence around point mutations tested showing potential endophilin-binding motifs. e, Quantification of the binding of indicated mutated cytosolic fragments (see c for an example of one set of immunoblots) to the indicated GSTâ€“SH3 domains (or GST as control). The percentage enrichment of receptors tails in pulled-down fractions with respect to their respective levels in the original cell extracts (input) is shown (meansÂ Â±Â s.e.m. from three independent experiments; NS, non-significant, *PÂ <Â 0.05, ***PÂ <Â 0.001, one-way ANOVA and Dunnettâ€™s test versus respective wild-type). f, Verification of AP2 and Endo1+2+3 depletion by RNAi from three independent control (â€˜Câ€™) and RNAi (â€˜Râ€™) experiments. Immunoblot (left) and bar graph (right) representations of the data are shown (meansÂ Â±Â s.e.m. from three independent experiments; ***PÂ <Â 0.001, Studentâ€™s t-test versus respective control). g, Transferrin and LDL uptake was inhibited by clathrin and AP2 RNAi but not by control (Ctrl) or endophilin-A triple RNAi (TKD, three different pools). Ligand uptake was measured by flow cytometry (meanÂ Â±Â s.e.m., 10,000 cells per experiment, n = 3 independent experiments; NS, non-significant, ***PÂ <Â 0.001, one-way ANOVA and Dunnettâ€™s test versus respective control). h, Anti-LDLR antibody uptake assay in control or TKD RPE1 cells. Cells were immunostained for anti-LDLR (post feeding) and endophilin (red). Cells strongly depleted for endophilin (*) showed similar LDLR endocytosis to control cells, showing that LDLR endocytosis is not dependent on endophilin-A proteins (images representative of ten captures). i, Dynamics of clathrin-coated pits in BSC1 cells marked by Ïƒ2-EGFP (AP2) and acquired by live-cell spinning-disk confocal microscopy imaging. Left pictures show representative images from the bottom surface of cells; right pictures are kymographs (time projections) representative of five captures from control and Endo1+2+3 RNAi cells. Right: plot of individual lifetimes of clathrin/AP2 pits calculated from live imaging of 4 cells for each condition. Those had significant longer lifetimes in TKD cells, perhaps related to a reduced synaptojanin recruitment to membranes and thus an increase in PtdIns(4,5)P2 levels5,20 (bars, means; n = 211 and 363 from 3 independent experiments, meanÂ Â±Â s.e.m. is written at the bottom, ***PÂ <Â 0.001, Mannâ€“Whitney U-test). j, Surface staining of Î²1-AR using the HAâ€“Î²1-ARâ€“EGFP construct. Control, AP2 RNAi and endophilin TKD cells were directly stained for steady-state accumulation of Î²1-AR at their cell surface and imaged using a confocal microscope (images are representative of five captures). In endophilin TKD cells Î²1-AR accumulated in a limited area of the plasma membrane, similar to the area stained with lamellipodin in Extended Data Fig. 2c. This panel complements that in Fig. 1b showing a lack of internalization of Î²1-AR in TKD cells. k, Immunoblots showing the expression of Î²1 adrenergic receptor (Î²1-AR) in BSC1 and RPE1 cells. Decreasing amount of cell extracts were loaded from left to right. l, Left: isolation of a plasma membrane fraction (see Methods) showed accumulation of Î²1-adrenergic receptors after endophilin RNAi. Erk was used to monitor cytosolic proteins, calnexin endoplasmic reticulum proteins and integrin Î²1, Î²1-adrenergic receptor (Î²1-AR) and EGFR to monitor plasma membrane proteins. Note that the plasma membrane fraction (PM) was enriched in plasma membrane proteins and did not contain cytosolic ERK or ER-localized calnexin. Right: levels of Î²1-AR were enriched in the plasma membrane fraction from TKD cells versus control cells. m, Bar graph shows the amounts of internalized/total depicted HAâ€“receptorâ€“EGFP in control (grey) or endophilin TKD (red) samples (meanÂ Â±Â s.e.m., n = 3 independent experiments; ***PÂ <Â 0.001, Studentâ€™s t-test versus respective control). n, Surface staining of HAâ€“receptorâ€“EGFP constructs (see Fig. 1b, c). Cells were directly stained with anti-HA antibody at 4Â Â°C and measured using a plate reader to assay the steady-state accumulation of receptors at the cell surface. The cell surface signals (HA) were corrected for expression levels (EGFP) and the values were normalized to the mean of the control cells (meanÂ Â±Â s.e.m., n = 3 independent experiments; ***PÂ <Â 0.001, Studentâ€™s t-test versus respective control). The same receptors that showed a decreased endocytosis (m) show an increased surface accumulation here, an effect that is dependent on ligand activation. Scale bars: 20Â Î¼m (h), 10Â Î¼m (j) and 5Â Î¼m (i).


Extended Data Figure 2 Endophilin and clathrin did not co-localize at the leading edge of cells by standard and super-resolution microscopy.
Related to Fig. 1. a, b, Confocal microscopy images (optical planes from the middle of cells) showing endogenous staining of endophilin (green) in BSC1 cells (low magnification in a and higher magnification in b, left panel) and in a normal diploid RPE1 cell (middle). Images in b were oriented with leading edges (identified by phalloidin staining (actin, red)) pointing to the right. Arrowheads point to endophilin puncta on the leading edge of these cells. Right: there was no anti-endophilin staining in endophilin-A TKD cells, validating the specificity of the antibody. Insets are zooms of the boxed areas. c, Confocal microscopy images showing endogenous staining of lamellipodin, Arp3 or vinculin (all green) and endophilin (red) in BSC1 cells. Insets are zooms of the boxed areas. Endophilin co-localized with lamellipodin and Arp3 at the leading edge but not with vinculin (a marker of focal adhesions). d, Top: same data as in Fig. 1c but showing the individual channels. Confocal microscopy images showing clathrin (EGFPâ€“LCa, green) and endophilin (endophilin A2â€“RFP, red) in a live BSC1 cell. â€˜Nâ€™ denotes the nucleus. Bottom: confocal microscopy images showing endogenous staining of Î±-adaptin (AP2), and endophilin (red) in BSC1. Endogenous staining also shows an enrichment of endophilin at the leading edge. e, Super-resolution stimulated emission depletion (STED) microscopy images of a BSC1 cell immunostained for clathrin and showing coated pits and vesicles labelled at the ventral surface of the cell but not at the leading edges where the staining was diffused. f, Super-resolution structured illumination microscopy (SIM) images of a BSC1 cell immunostained for clathrin (red) and endophilin (green). Note the absence of co-localization between the two markers. g, Confocal microscopy images (bottom surface optical section) showing the localization of AP2 (Ïƒ2-EGFP, green) and endophilin (EndoA2â€“RFP, red) in a live migrating cell. Arrowheads point to endophilin A2 puncta at the leading edge of the cell; these are negative for AP2. Inset is a zoom of the boxed area. h, Confocal microscopy images showing a lack of co-localization of clathrin (EGFPâ€“LCa, green) and the other endophilin-A expressed in BSC1 cells: endophilin A3 (endophilin A3â€“RFP, red). Arrowheads point to endophilin A3 puncta at the leading edge of live BSC1 cells; these are negative for clathrin puncta. i, Confocal microscopy images (optical section of bottom surface) showing clathrin (EGFPâ€“LCa, green) and endophilin (EndoA2â€“RFP, red) localization in a live confluent BSC1 cell (thus no leading edge). Neighbouring cells were not transfected. Arrowheads point to endophilin A2 puncta at the bottom surface of the cell; most of these are negative for AP2. Inset is a zoom of the boxed area. j, Representative kymographs of AP2 (Ïƒ2â€“EGFP) and endophilin (EndoA2â€“RFP) from live-cell imaging acquired at the ventral surface of a confluent cell. The arrowhead points to an endophilin-positive track devoid of AP2. Images and kymographs are representative of at least ten captures, from three independent experiments. Scale bars: 20Â Î¼m (a, d), 10Â Î¼m (b, c, f, e), 5Â Î¼m (e, h) and 1Â Î¼m (f insets).


Extended Data Figure 3 Endophilin co-localized with dynamin, cortactin and synaptojanin but not with known clathrin-independent endocytosis markers.
Related to Fig. 1. a, Representative confocal images showing the co-localization of endophilin (endoA2â€“RFP or anti-endophilin, red) with dynamin (dynamin2â€“EGFP expressed at low levels, or anti-dynamin for endogenous protein (green)), cortactin (anti-cortactin for endogenous protein) or synaptojanin (synaptojanin 1-170â€“EGFP expressed at low levels). Insets are zooms of the boxed areas. b, Representative confocal images showing the absence of co-localization between endophilin (anti-endophilin, or endoA2â€“RFP, red) and caveolin 1 (endogenous), GRAF1â€“EGFP and flotillin 1â€“EGFP. The bottom row shows the background co-localization of endophilin with a soluble protein (EGFP). Arrowheads point to endophilin puncta at the leading edge of cells; these were negative for the markers tested. Insets are magnifications of the boxed areas. c, Co-localization of endogenous endophilin (red) with lamellipodin, but not caveolin-1 (green). Images were oriented with the leading edges to the right. Arrowheads point to co-localization between markers. Intensity profiles were acquired along the indicated lines. d, Receptor uptake assay (HAâ€“receptorâ€“EGFP internalized corrected for their total levels) in cells pre-treated with the indicated RNAi (meanÂ Â±Â s.e.m., n = 3 independent experiments). e, Confocal images of cells treated with caveolin-1 (Cav1) or flotillin 1 and 2 (Flot1+2) or control siRNA and immunostained for endophilin (green) and actin (red). Cells were counter-stained (blue) for caveolin 1 (Cav1) or flotillin-1 (Flot1) to ascertain for the depletion of the targeted proteins in the cells imaged. Images are representative of at least ten captures, from three independent experiments. Scale bars: 10Â Î¼m (a) and 5Â Î¼m (b, c and e).


Extended Data Figure 4 Formation of endophilin-positive tubules and vesicles upon Î²1-adrenergic receptor activation.
Related to Fig. 1. a, Images from a time-lapse acquired by spinning-disk confocal microscopy of a BSC1 cell expressing low levels of endophilin-A2â€“RFP, after addition of 10Â Î¼M of denopamine (t = 0). Arrowheads point to a tubulo-vesicular carrier formed upon stimulation and moving from the cell edge (right) to the cell centre (left). See also Supplementary Video 3. b, The budding rate of endophilin-positive assemblies (EPAs), measured as number of EPAsÂ Î¼mâˆ’2Â sâˆ’1, after stimulation with denopamine (added at t = 0). Data were acquired from data sets similar to Supplementary Video 3 and normalized to the maximum budding rate (meanÂ Â±Â s.e.m., n = 3 independent experiments). c, Budding of endophilinâ€“mRFP-positive structures determined by live-cell imaging after addition of various Î²1-AR (isoproterenol, dobutamine and denopamine) or Î²2-AR (isoproterenol, terbutaline) agonists concentrations. Data are expressed as the percentage of maximum budding. See also Supplementary Video 3. Terbutaline, the specific Î²2-AR agonist, does not stimulate EPA production. Inhibition of clathrin-mediated endocytosis by AP180 C terminus expression does not affect EPA formation stimulated by the Î²1-AR agonist denopamine (meanÂ Â±Â s.e.m., n = 3 independent experiments). d, Representative confocal images (optical planes located at the middle of cells) showing the co-localization of endophilin A2â€“RFP (red) with endogenous endophilin (green) in a BSC1 cell stimulated with denopamine (10Â Î¼M for 4Â min), validating the targeting of exogenously expressed endophilin in our experiments. e, Representative confocal images (optical section located at the middle of cells) of confluent cells stimulated for 4Â min with 10Â Î¼M denopamine and stained for endogenous endophilin (green) and Î±-adaptin (AP2, red). f, Representative confocal images (optical section located at the middle of cells) of sparse (f) or confluent (e) cells stimulated for 4Â min with the indicated adrenergic agonists and stained for endogenous endophilin (green) and actin (phalloidin, red). g, Quantification of EPAs in BSC1 and RPE1 cells upon stimulation with adrenergic receptor agonists in control, AP2 RNAi or AP180 dominant-negative-expressing cells or in cells pre-treated (5Â min) with beta-blockers before stimulation (meanÂ Â±Â s.e.m., n = 3 independent experiments). h, Quantification of the number of endogenous EPAs per 400Â Î¼m2 in BSC1, RPE1 cells and in primary fibroblasts upon stimulation with 10Â Î¼M denopamine for the indicated amounts of time (meanÂ Â±Â s.e.m., n = 3 independent experiments). i, Immuno-electron microscopy of BSC1 cells fixed 4Â min after addition of 10Â Î¼M denopamine (deno) to the medium or in absence of stimulation (control). Anti-endophilin antibodies were detected with a gold-conjugated secondary antibody (red balls). The two pictures on the left show clathrin-coated pits (top) and a potential vesicle (bottom). The other images are membrane structures at the plasma membrane and in the cytoplasm positive for the anti-endophilin antibody (endogenous endophilin). j, Representative confocal images (optical section located at the middle of cells) of cells depleted for clathrin (left, same image as in Fig. 1e) or AP2 and stimulated with denopamine (10Â Î¼M) for 4Â min before fixation. Endogenous endophilin (green) clathrin or AP2 (blue) and actin (phalloidin, red) were immunostained. k, Confocal microscopy images of a stimulated (10Â Î¼M denopamine for 4Â min) RPE1 cell grown on a poly-lysine-coated coverslip, incubated in soluble lysine-fixable Alexa647 dye, fixed and immunostained for endophilin (green). On the confocal plane taken at the bottom of the cell (dye in focus), no endophilin spots can be seen (out of focus). On a confocal plane at the middle of the cell (dye outlines the cell cross-section) EPAs are in focus, indicating that they are in the cytoplasm and not at the cell surface. l, Example of a BSC1 cell treated and immunostained as in m and imaged at the middle of the cell and showing several endophilin-positive tubules and diffraction-limited puncta. m, Confocal microscopy images of a stimulated (10Â Î¼M denopamine for 4Â min) BSC1 cell fixed and immunostained for Î±-adaptin (AP2, red) and endophilin (green). On the confocal plane taken at the bottom of the cell AP2 spots (known to be located at the plasma membrane) are in focus but EPAs are out of focus. On a confocal plane at the middle of the cell AP2 spots are out of focus but EPAs are in focus, indicating that they are inside the cytoplasm and not at the plasma membrane. n, Confocal microscopy images of EPAs labelled by endophilin. Arrowheads show diffraction-limited punctates, tubules and â€˜doughnut-likeâ€™ vesicles structures. o, Quantification of the occurrence in stimulated BSC1, RPE1 and human primary dermal fibroblasts of the three different endophilin-positive structures: diffraction-limited punctates (grey), tubules (green) and â€˜doughnut-likeâ€™ vesicles (meanÂ Â±Â s.e.m., n = 3 independent experiments). Images are representative of at least ten captures, from three independent experiments. Scale bars: 5Â Î¼m apart from i, which is 250Â nm.


Extended Data Figure 5 Î²1 and Î²2 arrestins were not essential in Î²1-adrenergic receptor agonist stimulation of endophilin vesicle formation.
Related to Fig. 1. a, Representative confocal images (optical planes located at the middle of cells) of cells overexpressing the indicated EGFP-tagged receptors TIL (green), stimulated with 10Â Î¼M denopamine for 4Â min and immunostained for endophilin (red) (images are representative of ten captures from three independent experiments). b, Quantification of the number of endogenous EPAs in cells overexpressing the indicated EGFP-tagged receptors TIL and stimulated with 10Â Î¼M denopamine for 4Â min (meanÂ Â±Â s.e.m., n = 3 independent experiments; NS, non-significant, *PÂ <Â 0.05, ***PÂ <Â 0.001, one-way ANOVA and Dunnettâ€™s test versus GFP). c, Confocal microscopy images of control and endophilin TKD cells, resting or stimulated (10Â Î¼M denopamine for 4Â min) and immunostained for phosphorylated CREB (pCREB, green), endophilin (red) and DNA (DRAQ5, blue) (images are representative of ten captures from three independent experiments). Asterisks denote cells with strongly reduced endophilin levels. d, Plate reader quantification of BSC1 or RPE1 cells treated as in a (meanÂ Â±Â s.e.m., n = 3 independent experiments; NS, non-significant, Studentâ€™s t-test versus respective control). e, Confocal microscopy images of control and stimulated (10Â Î¼M denopamine for 4Â min) cells immunostained for Î²-arrestin (green) and endophilin (red). EPAs (arrowheads) did not contain Î²-arrestin (images representatives of ten captures from three independent experiments). f, g, Confocal microscopy images of cells overexpressing Î²-arrestin-1 or 2-EGFP (f, green) or Î²-arrestin 1+2 KD cells (g), stimulated with denopamine (10Â Î¼M for 4Â min), fixed and immunostained for endophilin (red) and Î²-arrestin (g, green) (images representatives of at least ten captures). h, Plate reader quantification of BSC1 or RPE1 cells treated as in eâ€“g (meanÂ Â±Â s.e.m., n = 3 independent experiments; NS, non-significant, one-way ANOVA and Dunnettâ€™s test versus respective controls). Scale bars: 40Â Î¼m (c) and 5Â Î¼m (a, eâ€“g).


Extended Data Figure 6 Several growth factors stimulated the formation of endophilin-positive assemblies.
Related to Fig. 2. a, Confocal images (optical planes from the middle of cells) of BSC1 cells treated for 4Â min with the indicated growth factors (all at 10Â ngÂ mlâˆ’1) and immunostained for endogenous endophilin-A (green). Cells were oriented with their leading edges (identified with phalloidin staining (actin, red)) pointing to the right (images are representative of ten captures from three independent experiments). Arrowheads show internal vesicles positive for endogenous endophilin in the VEGF, PDGF and IGF-1-treated but not TGF-Î²-treated cells (see also quantification in Fig. 2c). b, EPA production in a primary fibroblast from an adult donor treated for 4Â min with 50Â ngÂ mlâˆ’1 EGF and immunostained for endogenous endophilin-A (green). The image is representative of eight captures. c, Quantification of the number of endogenous EPAs per 400Â Î¼m2 in BSC1, RPE1 cells or primary fibroblasts upon stimulation with 50Â ngÂ mlâˆ’1 EGF for the indicated amounts of time (meanÂ Â±Â s.e.m., n = 3 independent experiments). d, Confocal section of a BSC1 cell fixed 4Â min after addition of 50Â ngÂ mlâˆ’1 Alexa555-labelled EGF, HGF, FGF, VEGF and IGF-1 to the medium. Endogenous endophilin (green) was detected as in a. Arrowheads point to internal vesicles positive for endogenous endophilin and containing internalized growth factors (images are representatives of at least eight captures). e, Plate reader quantification of BSC1 cell incubated with a monoclonal antibody anti-EGFR (13A9, green), that does not interfere with EGF binding, and 50Â ngÂ mlâˆ’1 of the indicated ligands. There is no cross-talk between EGFR and activation of other growth factor receptors or activation of Î²1 adrenergic receptors. Thus, endophilin-positive structures only have EGFR when stimulated by EGF (see Fig. 2d, e), and likewise on Î²1 adrenergic receptor activation there is no EGFR in the endophilin-positive structures. This reinforces the theme that one needs specific receptor activation to transduce a signal across the membrane to activate EPA formation (meanÂ Â±Â s.e.m., n = 3 independent experiments). f, Quantification of the number of EPAs in cells depleted for CIN85 or Cbl or overexpressing Î²1-AR TIL, Cbl-PRD or CIN85-PRD, -CC-PRD, SH3(3) and stimulated with EGF (blue), HGF (purple) or denopamine (fuchsia) (meanÂ Â±Â s.e.m., n = 3 independent experiments). g, Confocal images of control, AP2, clathrin or endophilin TKD (pools 1 and 3) treated cells, fixed and immunostained for EGFR (green) and endophilin (red) (images are representative of at least ten captures). Asterisks denote cells with strongly reduced endophilin levels. h, Plate reader quantification of BSC1 and RPE1 treated as in g (meanÂ Â±Â s.e.m., n = 3 independent experiments). i, Flow cytometry profiles of total EGFR levels in control (black) or TKD (red) cells. n = 50,000 cells for each conditions. j, Plate reader quantification of control or endophilin TKD BSC1 and RPE1 treated with 50Â ngÂ mlâˆ’1 EGF for the indicated time (meanÂ Â±Â s.e.m., n = 3 independent experiments). k, Confocal images of a BSC1 cell stimulated for 5Â min with 250Â ngÂ mlâˆ’1 EGF, fixed and immunostained for EGFR (green) and endophilin (red) (images are representative of eight captures). Note that EPAs (arrowheads) are distinct from the large vacuole-like structures which are called macropinosomes, seen best in the middle confocal plane. Scale bars: 40Â Î¼mÂ (g), 10Â Î¼m (k) and 5Â Î¼m (aâ€“c).


Extended Data Figure 7 MAPK signalling and neurite outgrowth in endophilin TKD cells.
Related to Fig. 2. a, Signals from PathScan antibody arrays reporting various intracellular signalling pathways. Intensities were normalized to the mean of the controls. Of all the signalling pathways tested endophilin TKD leads to a higher level of ERK phosphorylation (a component of the MAP kinase signalling cascade) in resting cells (mean, n = 2 independent experiments). b, Signals from PathScan antibody arrays reporting various steps within the EGFR signalling cascade. Intensities were normalized to the mean of the controls. The inset shows the level of endophilin knockdown in TKD cells. Endophilin TKD does not prevent phosphorylation of the EGFR at Y998 and thus does not account for defective endocytosis. Endophilin TKD does not prevent MEK phosphorylation on the RAF phosphorylation site (S217/S221), important for MEK activation (mean, n = 2 independent experiments). c, Immunoblots from control (C), endophilin TKD (E) or AP2 RNAi (A) cells stimulated with 5 (left) or 100Â ngÂ mlâˆ’1 (right) EGF for the indicated times. Quantification of the signals from three independent experiments, normalized to the mean of the controls at t = 0 are shown below. As in a the resting pERK levels are increased in endophilin RNAi cells, probably because of an accumulation of receptors on the cell surface. At low concentrations of EGF (5Â ngÂ mlâˆ’1) AP2 RNAi largely prevents MAP kinase signalling while endophilin RNAi does not (but rather an enhanced level of signalling). At higher concentrations of EGF (100Â ngÂ mlâˆ’1) there is much stronger signalling at an early time point in endophilin RNAi, pointing again to the importance of this pathway in reducing basal signalling (meanÂ Â±Â s.e.m., n = 3 independent experiments; ***PÂ <Â 0.001, one-way ANOVA and Dunnettâ€™s test versus control t = 0). d, Confocal microscopy images of resting or stimulated (50Â ngÂ mlâˆ’1 EGF for 10 min) cells pre-treated with endophilin TKD (3Â days) or the indicated inhibitors for 30Â min before stimulation and immunostained for phosphorylated ERK1/2 (pERK, red), endophilin (green) and DNA (DRAQ5, blue) (images are representatives of at least ten captures). Asterisks denote cells with strongly reduced endophilin levels. e, Flow cytometry analysis of phosphorylated Erk1/2 levels in resting or stimulated (50Â ngÂ mlâˆ’1 EGF for 10Â min) control (black) and endophilin TKD (red) cells. n = 50,000 cells for each conditions. f, Plate reader quantification of BSC1 or RPE1 cells treated as in d. Thus by immunoblotting and by immunostaining there is an increase in pERK in resting conditions in endophilin RNAi cells. Note the stronger increase in basal and stimulated pERK levels in endophilin TKD cells (meanÂ Â±Â s.e.m., n = 3 independent experiments). g, Plate reader quantification of control and endophilin TKD BSC1 or RPE1 cells resting or stimulated (50Â ngÂ mlâˆ’1 EGF for 30Â min) and immunostained for phosphorylated Elk1, Jun or CREB (pElk1, pJun or pCREB) (meanÂ Â±Â s.e.m., n = 3 independent experiments). h, Left: confocal images (optical planes from the middle of cells) of BSC1 cells pre-treated with MEKi 1 or MEKi 2 for 30 min and stimulated with EGF (50Â ngÂ mlâˆ’1, 4Â min) and immunostained for endogenous endophilin-A (green) (images are representatives of six captures). Endophilin-positive puncta formation in response to growth factors is not dependent on MEK activation. Right: quantification of the number of endogenous EPAs per 400Â Î¼m2 in BSC1 or RPE1 cells pre-treated for 30Â min with the indicated inhibitors and stimulated with EGF (50Â ngÂ mlâˆ’1, 4Â min) (meanÂ Â±Â s.e.m., n = 3 independent experiments). i, NGF stimulates endophilin-positive puncta formation is RPE1 cells. Confocal images (optical planes from the middle of cells) of an RPE1 cell treated for 4Â min with NGF (10Â ngÂ mlâˆ’1 for 4Â min), fixed and immunostained for endogenous endophilin-A (green) (images are representatives of six captures). Cells were oriented with the leading edges (identified with phalloidin staining (actin, red)) pointing to the right. Arrowheads show internal vesicles positive for endogenous endophilin. j, Confocal images of cells treated with endophilin (endo TKD) or control siRNA and incubated with anti-NGFR antibodies (green) and 10Â ngÂ mlâˆ’1 NGF for 10Â min at 37Â Â°C, surface stripped on ice, fixed and immunostained for endophilin (red) and actin (blue) (images are representatives of eight captures). k, Neurite extension assays. PC12 cells pre-treated with control or endophilin TKD were stimulated or not with 100Â ngÂ mlâˆ’1 NGF for up to 6Â days (images are representatives of at least 12 images). Quantifications show the percentage of cells with neurites (top left), average number of neurites per cell (top right), average neurite length (bottom left) and average neurite length per cell having neurites (bottom right) (meanÂ Â±Â s.e.m., n = 3 independent experiments). Scale bars: 40Â Î¼m (d), 20Â Î¼m (k) and 5Â Î¼m (hâ€“j).


Extended Data Figure 8 IL-2R uptake in endophilin TKD human T cells and chemical and genetic perturbations of FEME.
Related to Figs 3 and 4. a, Confocal microscopy images (focal plane at the middle of cells) of human T cells immunostained for endogenous endophilin A (green) (images are representatives of at least ten images). Cells were either fixed directly (â€˜restingâ€™) or 3 and 10Â min after addition of IL-2 (500Â pM). Scale bars, 5Â Î¼m (meanÂ Â±Â s.e.m., n = 3 independent experiments; ***PÂ <Â 0.001, Studentâ€™s t-test versus respective controls). b, Internalization rates of IL-2R and TfR in control, AP2 or endophilin TKD human T cells, measured by a plate reader (meanÂ Â±Â s.e.m., n = 3 independent experiments; ***PÂ <Â 0.001, Studentâ€™s t-test versus respective control time points). Inset: immunoblots of cell extracts used validated endophilin TKD. c, Super-resolution structured illumination microscopy (SIM) images of BSC1 cells overexpressing RFP-dynamin1-T65A mutant and immunostained for endophilin (green) and clathrin (blue) (images are representatives of at least five captures). Note that there was no leading edge in the presence of this dynamin mutant, and endophilin-positive assemblies were distributed across the plasma membrane. Dynamin1-T65A formed short tubules from the plasma membrane and at the tips of some of these tubules (arrowheads) in the boxed area (edges of cells) there were endophilin but not clathrin signals. d, Co-immunoprecipitation of Î”H0-BARâ€“EGFP with endogenous endophilin (red box, left) of with Myc-tagged overexpressed endophilin (red box, right). e, Flow cytometry profiles of internalized transferrin (Alexa546-labelled) in cells overexpressing increasing amounts of EGFPâ€“AP180-DN (red) or Î”H0-BARâ€“EGFP (black). n = 2,000 cells for each condition. f, Confocal images of cells overexpressing the indicated mutants (blue) for 24Â h or treated with the indicated inhibitors for 5Â min before stimulation with 10Â Î¼M denopamine (4Â min), fixed and immunostained for endogenous endophilin-A (green) and actin (phalloidin, red) (images are representative of at least six captures). Arrowheads point to EPAs. g, Live-cell confocal images before and after (+30Â s) the addition of indicated inhibitors to cells expressing endophilin A2â€“RFP (green) and clathrin (EGFPâ€“LCa, red) or dynamin (dynamin 2â€“EGFP, red) (images are representatives of at least three captures from independent experiments). Arrowheads point to endophilin spots. Scale bars: 10Â Î¼m (a, c), 5Â Î¼m (f, g) and 1Â Î¼m (c, insets).


Extended Data Figure 9 The recruitment of endophilin at leading edges of cells requires PtdIns(3,4)P2.
Related to Fig. 5. a, Receptor uptake assay (HAâ€“receptorâ€“EGFP internalized, corrected for total levels) in cells treated with the depicted inhibitors (meanÂ Â±Â s.e.m., n = 3 independent experiments). b, Wound-closure assay. BSC1 and RPE1 cell monolayers were wounded and cell migration into the wound sites were assessed after 16Â h. The inhibitors were added just after wounding (meanÂ Â±Â s.e.m., n = 3 independent experiments). c, Confocal images of cells treated with the indicated inhibitors or RNAi, fixed and immunostained for endogenous endophilin-A (green) and actin (phalloidin, red) (images are representative of at least six captures from three independent experiments). Arrowheads point to endophilin foci at the leading edges of cells. d, Confocal images of cells overexpressing the indicated constructs fixed and immunostained for endogenous endophilin-A (red) and actin (phalloidin, blue) (images are representative of at least six captures from three independent experiments). e, Quantifications of PtdIns(4,5)P2 (mocha), PtdIns(3,4)P2 (red) or PtdIns(3,4,5)P3 (asparagus) levels from cells treated with the indicated siRNA and PI(3)K inhibitor, immunostained for the lipids and measured using a plate reader (meanÂ Â±Â s.e.m., n = 3 independent experiments; NS, non-significant; *PÂ <Â 0.05; ***PÂ <Â 0.001, one-way ANOVA and Dunnettâ€™s test versus respective control levels). f, Confocal images of cells treated with INP4A and INP4B or control siRNA, fixed and immunostained for endogenous endophilin-A (green) and LAMP-1 (red) (images are representative of at least six captures from three independent experiments). Intensity profiles were acquired along the indicated lines. Scale bars: 20Â Î¼m (d), 10Â Î¼m (f) and 5Â Î¼m (c).


Extended Data Figure 10 Lamellipodin recruits endophilin at the leading edge.
Related to Fig. 5. a, Scheme depicting the endophilin constructs used. b, c, Confocal images of cells depleted for endogenous endophilin (TKD) or not (control siRNA) and expressing the indicated constructs, fixed and immunostained for endogenous endophilin to ascertain the depletion in the cells imaged (images are representatives of at least six captures from three independent experiments). d, Quantification of construct levels at the leading edges of cells depleted of endogenous endophilin (TKD) and expressing the indicated endophilin constructs (meanÂ Â±Â s.e.m., n = 3 independent experiments; NS, non-significant; ***PÂ <Â 0.001 one-way ANOVA and Dunnettâ€™s test versus respective full-length levels). e, Pull-down experiments using GSTâ€“SH3 domains of endophilin-A1, 2 or 3 (or GST as a control) with EGFPâ€“lamellipodin. 10% of cell extract was used as â€˜inputâ€™. f, Confocal image of cell depleted for lamellipodin (lpd) and treated with 200Â ngÂ mlâˆ’1 EGF for 5Â min to stimulate PI(3)K and induce ruffles, fixed and immunostained for endophilin (green), actin (red) and lamellipodin (blue, to ascertain the depletion) (images are representatives of at least six captures from three independent experiments). g, Confocal image of a cell overexpressing EGFPâ€“lamellipodin next to a non-transfected cell, fixed and immunostained for endophilin (red) and actin (blue) (images representatives of at least six captures from three independent experiments). h, Confocal images of cells treated with the indicated RNAi and inhibitors, fixed and immunostained for lamellipodin (green), endophilin (red) and actin (blue) (images representatives of at least six captures from three independent experiments). i, Quantification of levels of endogenous lamellipodin at the leading edges of cells treated with the indicated small inhibitors (blue), RNAi (purple), RNAi plus class I PI(3)K inhibitor (â€˜PI3Kiâ€™, GDC-0941, 50Â nM for 5Â min; red) (meanÂ Â±Â s.e.m., n = 3 independent experiments; NS, non-significant; *PÂ <Â 0.05, **PÂ <Â 0.01, ***PÂ <Â 0.001 one-way ANOVA and Dunnettâ€™s test versus control). j, Model: endophilin-dependent (FEME) endocytosis from the leading edge. Endophilin-coated vesicles/tubules associate with receptors (after ligand binding) or receptor-adaptors (like CIN85/Cbl) via their SH3 domains, and promote membrane curvature with their N-terminal N-BAR domains. Vesicle scission is promoted by dynamin, which is also recruited by endophilin. Scale bars: 20Â Î¼m (b, g), 10Â Î¼m (f) and 5Â Î¼m (c, h).
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Spinning-disk confocal microscopy of a BSC1 cell stably expressing Ïƒ2-EGFP (AP2, green) and transiently expressing low levels of endophilin A2-RFP (red) and imaged at 0.5 Hz. 
The cell was imaged at 37 Â°C in normal imaging medium (5 % serum). Note the numerous endophilin puncta devoid of AP2 at the leading edge of the cell. The video is playing at 10 frames/sec. (MOV 6447 kb)


Spinning-disk confocal microscopy of a confluent BSC1 cell transiently expressing low levels of EGFP-LCa (clathrin, green) and endophilin A2-RFP (red) and imaged at 2 Hz. 
The cell was imaged at 37 Â°C in normal imaging medium (5 % serum). Note the numerous endophilin puncta devoid of clathrin. The video is playing at 10 frames/sec. (MOV 6170 kb)


Spinning-disk confocal microscopy (focal plane ~1 Î¼m above the bottom surface) of a BSC1 cell transiently expressing low levels of endophilin A2-RFP (red) and imaged at 0.5 Hz. 
The cell was imaged at 37 Â°C in normal imaging medium (5 % serum). Additional 10 Î¼M isoproterenol was added at the time frame 5. Note the numerous endophilin-coated tubules and vesicles budding from the periphery of the cell and accumulating toward the perinuclear area. The video is playing at 10 frames/sec. (MP4 29175 kb)


Spinning-disk confocal microscopy (focal plane ~1 Î¼m above the bottom surface) of a BSC1 cell transiently expressing low levels of endophilin A2-RFP (red) and imaged at 0.5 Hz. 
The cell was imaged at 37 Â°C in serum-free imaging medium (changed right before imaging). Additional 2 ng/mL was added at the time frame 0. Note the numerous endophilin-coated tubules and vesicles budding from the periphery of the cell and moving toward the perinuclear area. The video is playing at 10 frames/sec. (MP4 16738 kb)


Spinning-disk confocal microscopy (focal plane ~1 Î¼m above the bottom surface) of a BSC1 cell transiently expressing endophilin A2-RFP (red) and Cdc42-T17N dominant negative mutant and imaged at 0.5 Hz. 
The cell was imaged at 37 Â°C in normal imaging medium (5 % serum). Note the recruitment of endophilin all around the edge of the cell and the numerous endophilin-coated tubules and vesicles budding from the periphery of the cell even though the cell was not stimulated with additional growth factor or Î²1-AR agonist. The video is playing at 10 frames/sec. (MOV 13892 kb)
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Endocytosis and cell signalling
Cells internalize nutrients and turnover membrane components through the process of endocytosis, which in most cases involves the protein clathrin. Endophilin has been thought to be a component of clathrin-mediated endocytosis, but two studies published in this issue of Nature show that this protein mediates a fast-acting, clathrin-independent form of endocytosis which involves formation of tubular vesicles. Emmanuel Boucrot et al. report that this pathway is triggered by binding of ligands to cargo receptors, and requires the proteins dynamin and actin. Endophilin-mediated endocytosis also seems to have distinct cellular homes, occurring at the leading edges of cells where the lipid PtdIns(3,4)P2 ensures endophilin engagement. This form of endocytosis is shown to mediate the uptake of several physiological and disease-relevant receptors including G-protein-coupled receptors and receptor tyrosine kinases. In the second paper, Henri-FranÃ§ois Renard et al. provide evidence that bacterial toxins take advantage of the same pathway to enter cells, and also find that endophilin-A2 acts together with dynamin and actin.
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