Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The terrestrial uranium isotope cycle

Abstract

Changing conditions on the Earth’s surface can have a remarkable influence on the composition of its overwhelmingly more massive interior. The global distribution of uranium is a notable example. In early Earth history, the continental crust was enriched in uranium. Yet after the initial rise in atmospheric oxygen, about 2.4 billion years ago, the aqueous mobility of oxidized uranium resulted in its significant transport to the oceans and, ultimately, by means of subduction, back to the mantle1,2,3,4,5,6,7,8. Here we explore the isotopic characteristics of this global uranium cycle. We show that the subducted flux of uranium is isotopically distinct, with high 238U/235U ratios, as a result of alteration processes at the bottom of an oxic ocean. We also find that mid-ocean-ridge basalts (MORBs) have 238U/235U ratios higher than does the bulk Earth, confirming the widespread pollution of the upper mantle with this recycled uranium. Although many ocean island basalts (OIBs) are argued to contain a recycled component9, their uranium isotopic compositions do not differ from those of the bulk Earth. Because subducted uranium was probably isotopically unfractionated before full oceanic oxidation, about 600 million years ago, this observation reflects the greater antiquity of OIB sources. Elemental and isotope systematics of uranium in OIBs are strikingly consistent with previous OIB lead model ages10, indicating that these mantle reservoirs formed between 2.4 and 1.8 billion years ago. In contrast, the uranium isotopic composition of MORB requires the convective stirring of recycled uranium throughout the upper mantle within the past 600 million years.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Uranium isotopic compositions (δ238U) versus Th/U ratios for mantle-derived basalts and altered oceanic crust.
Figure 2: Cartoon of the terrestrial U isotope cycle over the history of Earth.
Figure 3: Pb model ages versus Th/U in OIB mantle sources.

References

  1. Albarède, F. & Michard, A. Transfer of continental Mg, S, O and U to the mantle through hydrothermal alteration of the oceanic crust. Chem. Geol. 57, 1–15 (1986)

    ADS  Google Scholar 

  2. Zartman, R. E. & Haines, S. M. The plumbotectonic model for Pb isotopic systematics among major terrestrial reservoirs: a case for bi-directional transport. Geochim. Cosmochim. Acta 52, 1327–1339 (1988)

    ADS  CAS  Google Scholar 

  3. McCulloch, M. T. The role of subducted slabs in an evolving earth. Earth Planet. Sci. Lett. 115, 89–100 (1993)

    ADS  Google Scholar 

  4. Kramers, J. D. & Tolstikhin, I. N. Two terrestrial lead isotope paradoxes, forward transport modelling, core formation and the history of the continental crust. Chem. Geol. 139, 75–110 (1997)

    ADS  CAS  Google Scholar 

  5. Collerson, K. D. & Kamber, B. S. Evolution of the continents and the atmosphere inferred from Th-U-Nb systematics of the depleted mantle. Science 283, 1519–1522 (1999)

    ADS  CAS  PubMed  Google Scholar 

  6. Elliott, T., Zindler, A. & Bourdon, B. Exploring the kappa conundrum: the role of recycling in the lead isotope evolution of the mantle. Earth Planet. Sci. Lett. 169, 129–145 (1999)

    ADS  CAS  Google Scholar 

  7. Zartman, R. E. & Richardson, S. H. Evidence from kimberlitic zircon for a decreasing mantle Th/U since the Archean. Chem. Geol. 220, 263–283 (2005)

    ADS  CAS  Google Scholar 

  8. Kelley, K. A., Plank, T., Farr, L., Ludden, J. & Staudigel, H. Subduction cycling of U, Th, and Pb. Earth Planet. Sci. Lett. 234, 369–383 (2005)

    ADS  CAS  Google Scholar 

  9. White, W. M. & Hofmann, A. W. Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296, 821–825 (1982)

    ADS  CAS  Google Scholar 

  10. Chase, C. G. Oceanic island Pb: two-stage histories and mantle evolution. Earth Planet. Sci. Lett. 52, 277–284 (1981)

    ADS  CAS  Google Scholar 

  11. Blichert-Toft, J., Zanda, B., Ebel, D. S. & Albarède, F. The Solar System primordial lead. Earth Planet. Sci. Lett. 300, 152–163 (2010)

    ADS  CAS  Google Scholar 

  12. Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013)

    ADS  CAS  Google Scholar 

  13. Jenner, F. E. & O'Neill, H. S. C. Analysis of 60 elements in 616 ocean floor basaltic glasses. Geochem. Geophys. Geosyst. 13, 1–11 (2012)

    Google Scholar 

  14. Galer, S. J. G. & O’Nions, K. Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature 316, 778–782 (1985)

    ADS  CAS  Google Scholar 

  15. Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014)

    ADS  CAS  PubMed  Google Scholar 

  16. Stirling, C. H., Andersen, M. B., Potter, E.-K. & Halliday, A. N. Low temperature isotope fractionation of uranium. Earth Planet. Sci. Lett. 264, 208–225 (2007)

    ADS  CAS  Google Scholar 

  17. Weyer, S. et al. Natural fractionation of 238U/235U. Geochim. Cosmochim. Acta 72, 345–359 (2008)

    ADS  CAS  Google Scholar 

  18. Fujii, Y., Nomura, M., Onitsuka, H. & Takeda, K. Anomalous isotope fractionation in uranium enrichment processes. J. Nucl. Sci. Technol. 26, 1061–1064 (1989)

    CAS  Google Scholar 

  19. Bigeleisen, J. Temperature dependence of the isotope chemistry of the heavy elements. Proc. Natl Acad. Sci. USA 93, 9393–9396 (1996)

    ADS  CAS  PubMed  Google Scholar 

  20. Connelly, J. N. et al. The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science 338, 651–655 (2012)

    ADS  CAS  PubMed  Google Scholar 

  21. Goldmann, A., Brennecka, G., Noordmann, J., Weyer, S. & Wadhwa, M. The 238U/235U of the Earth and the Solar System. Geochim. Cosmochim. Acta 148, 145–158 (2015)

    ADS  CAS  Google Scholar 

  22. Staudigel, H., Davies, G. R., Hart, S. R., Marchant, K. M. & Smith, B. M. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418. Earth Planet. Sci. Lett. 130, 169–185 (1995)

    ADS  CAS  Google Scholar 

  23. Bach, W., Peucker-Ehrenbrink, B., Hart, S. R. & Blusztajn, J. S. Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B: implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem. Geophys. Geosyst. 4, 8904 (2003)

    ADS  Google Scholar 

  24. Dunk, R. M., Mills, R. A. & Jenkins, W. J. A reevaluation of the oceanic uranium budget for the Holocene. Chem. Geol. 190, 45–67 (2002)

    ADS  CAS  Google Scholar 

  25. Kelley, K. A., Plank, T., Ludden, J. & Staudigel, H. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem. Geophys. Geosyst. 4, 8910 (2003)

    ADS  Google Scholar 

  26. Brennecka, G. A., Wasylenki, L. E., Bargar, J. R., Weyer, S. & Anbar, A. D. Uranium isotope fractionation during adsorption to Mn-oxyhydroxides. Environ. Sci. Technol. 45, 1370–1375 (2011)

    ADS  CAS  PubMed  Google Scholar 

  27. Bopp, C. J., IV, Lundstrom, C. C., Johnson, T. M. & Glessner, J. J. Variations in 238U/235U in uranium ore deposits: isotopic signatures of the U reduction process? Geology 37, 611–614 (2009)

    ADS  CAS  Google Scholar 

  28. Elliott, T., Plank, T., Zindler, A., White, W. & Bourdon, B. Element transport from slab to volcanic front at the Mariana arc. J. Geophys. Res. 102, 14991–15019 (1997)

    ADS  CAS  Google Scholar 

  29. Hermann, J. Allanite: thorium and light rare earth element carrier in subducted crust. Chem. Geol. 192, 289–306 (2002)

    ADS  CAS  Google Scholar 

  30. Rudge, J. F. Mantle pseudo-isochrons revisited. Earth Planet. Sci. Lett. 249, 494–513 (2006)

    ADS  CAS  Google Scholar 

  31. Gutjahr, M. et al. Reliable extraction of a deepwater trace metal isotope signal from Fe–Mn oxyhydroxide coatings of marine sediments. Chem. Geol. 242, 351–370 (2007)

    ADS  CAS  Google Scholar 

  32. Goldstein, S. J., Murrell, M. T. & Janecky, D. R. Th and U isotopic systematics of basalts from the Juan de Fuca and Gorda Ridges by mass spectrometry. Earth Planet. Sci. Lett. 96, 134–146 (1989)

    ADS  CAS  Google Scholar 

  33. Bourdon, B., Goldstein, S. J., Bourles, D., Murrell, M. T. & Langmuir, C. H. Evidence from 10Be and U series disequilibria on the possible contamination of mid-ocean ridge basalt glasses by sedimentary material. Geochem. Geophys. Geosyst. 1, 2000GC000047 (2000)

    Google Scholar 

  34. Reinitz, I. & Turekian, K. K. 230Th/238U and 226Ra/230Th fractionation in young basaltic glasses from the East Pacific Rise. Earth Planet. Sci. Lett. 94, 199–207 (1989)

    ADS  CAS  Google Scholar 

  35. Andersen, M. B., Vance, D., Keech, A. R., Rickli, J. & Hudson, G. Estimating U fluxes in a high-latitude, boreal post-glacial setting using U-series isotopes in soils and rivers. Chem. Geol. 354, 22–32 (2013)

    ADS  CAS  Google Scholar 

  36. Richter, S. et al. The isotopic composition of natural uranium samples—Measurements using the new 233U/236U double spike IRMM-3636. Int. J. Mass Spectrom. 269, 145–148 (2008)

    CAS  Google Scholar 

  37. Andersen, M. B. et al. A modern framework for the interpretation of 238U/235U in studies of ancient ocean redox. Earth Planet. Sci. Lett. 400, 184–194 (2014)

    ADS  CAS  Google Scholar 

  38. Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. U238/U235 systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012)

    ADS  CAS  PubMed  Google Scholar 

  39. Russell, W. A., Papanastassiou, D. & Tombrello, T. A. Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 1075–1090 (1978)

    ADS  CAS  Google Scholar 

  40. Cheng, H. et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 371–372, 82–91 (2013)

    ADS  Google Scholar 

  41. Steele, R. C. J., Elliott, T., Coath, C. D. & Regelous, M. Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim. Cosmochim. Acta 75, 7906–7925 (2011)

    ADS  CAS  Google Scholar 

  42. Stirling, C. H., Halliday, A. N. & Porcelli, D. In search of live 247Cm in the early solar system. Geochim. Cosmochim. Acta 69, 1059–1071 (2005)

    ADS  CAS  Google Scholar 

  43. Stirling, C. H., Halliday, A. N., Potter, E.-K., Andersen, M. B. & Zanda, B. A low initial abundance of 247Cm in the early solar system: implications for r-process nucleo-synthesis. Earth Planet. Sci. Lett. 251, 386–397 (2006)

    ADS  CAS  Google Scholar 

  44. Brennecka, G. A. & Wadhwa, M. Uranium isotope compositions of the basaltic angrite meteorites and the chronological implications for the early Solar System. Proc. Natl Acad. Sci. USA 109, 9299–9303 (2012)

    ADS  CAS  PubMed  Google Scholar 

  45. Brennecka, G. A. et al. 238U/235U variations in meteorites: extant 247Cm and implications for Pb-Pb dating. Science 327, 449–451 (2010)

    ADS  CAS  PubMed  Google Scholar 

  46. Amelin, Y. et al. U–Pb chronology of the Solar System's oldest solids with variable 238U/235U. Earth Planet. Sci. Lett. 300, 343–350 (2010)

    ADS  CAS  Google Scholar 

  47. Rocholl, A. & Jochum, K. P. Th, U and other trace-elements in carbonaceous chondrites: implications for the terrestrial and solar-system Th/U ratios. Earth Planet. Sci. Lett. 117, 265–278 (1993)

    ADS  CAS  Google Scholar 

  48. Dauphas, N., Marty, B. & Reisberg, L. Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula. Astrophys. J. 565, 640–644 (2002)

    ADS  CAS  Google Scholar 

  49. Trinquier, A. et al. Origin of nucleosynthetic isotope heterogeneity in the solar protoplanetary disk. Science 324, 374–376 (2009)

    ADS  CAS  PubMed  Google Scholar 

  50. Barrat, J. A. et al. The Stannern trend eucrites: contamination of main group eucritic magmas by crustal partial melts. Geochim. Cosmochim. Acta 71, 4108–4124 (2007)

    ADS  CAS  Google Scholar 

  51. Morgak, J. W. & Lovering, J. F. Uranium and thorium in achondrites. Geochim. Cosmochim. Acta 37, 1697–1707 (1973)

    ADS  Google Scholar 

  52. Manhès, G., Allègre, C. J. & Provost, A. U-Th-Pb systematics of the eucrite “Juvinas”: precise age determination and evidence for exotic lead. Geochim. Cosmochim. Acta 48, 2247–2264 (1984)

    ADS  Google Scholar 

  53. Zindler, A. & Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493–571 (1986)

    ADS  CAS  Google Scholar 

  54. Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992)

    ADS  CAS  PubMed  Google Scholar 

  55. Farley, K. A. & Neroda, E. Noble gases in the Earth's mantle. Annu. Rev. Earth Planet. Sci. 26, 189–218 (1998)

    ADS  CAS  Google Scholar 

  56. Sims, K. W. W. et al. Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise. Geochim. Cosmochim. Acta 66, 3481–3504 (2002)

    ADS  CAS  Google Scholar 

  57. Waters, C. L. et al. Recent volcanic accretion at 9° N–10° N East Pacific Rise as resolved by combined geochemical and geological observations. Geochem. Geophys. Geosyst. 14, 2547–2574 (2013)

    ADS  CAS  Google Scholar 

  58. Regelous, M. et al. Variations in the geochemistry of magmatism on the East Pacific Rise at 10 30′ N since 800 ka. Earth Planet. Sci. Lett. 168, 45–63 (1999)

    ADS  CAS  Google Scholar 

  59. Regelous, M., Niu, Y., Abouchami, W. & Castillo, P. R. Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: geochemical evidence from the Mid-Atlantic Ridge at 26 S. Lithos 112, 57–72 (2009)

    ADS  CAS  Google Scholar 

  60. Robinson, C. J., White, R. S., Bickle, M. J. & Minshull, T. A. Restricted melting under the very slow-spreading Southwest Indian Ridge. Geol. Soc. Lond. Spec. Publ. 118, 131–141 (1996)

    ADS  CAS  Google Scholar 

  61. Avanzinelli, R. et al. Combined 238U/230Th and 235U/231Pa constraints on the transport of slab-derived material beneath the Mariana Islands. Geochim. Cosmochim. Acta 92, 308–328 (2012)

    ADS  CAS  Google Scholar 

  62. Alt, J. C. & Teagle, D. A. Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chem. Geol. 201, 191–211 (2003)

    ADS  CAS  Google Scholar 

  63. Romaniello, S. J., Herrmann, A. D. & Anbar, A. D. Uranium concentrations and 238U/235U isotope ratios in modern carbonates from the Bahamas: assessing a novel paleoredox proxy. Chem. Geol. 362, 305–316 (2013)

    ADS  CAS  Google Scholar 

  64. Alt, J. C. et al. Subsurface structure of a submarine hydrothermal system in ocean crust formed at the East Pacific Rise, ODP/IODP Site 1256. Geochem. Geophys. Geosyst. 11, 2010GC003144 (2010)

    Google Scholar 

  65. Staudigel, H. Hydrothermal alteration processes in the oceanic crust. Treatise Geochem. 3, 511–535 (2003)

    ADS  Google Scholar 

  66. Chen, J., Wasserburg, G., Von Damm, K. & Edmond, J. The U-Th-Pb systematics in hot springs on the East Pacific Rise at 21 N and Guaymas Basin. Geochim. Cosmochim. Acta 50, 2467–2479 (1986)

    ADS  CAS  Google Scholar 

  67. Mottl, M. et al. Warm springs discovered on 3.5 Ma oceanic crust, eastern flank of the Juan de Fuca Ridge. Geology 26, 51–54 (1998)

    ADS  CAS  Google Scholar 

  68. Plank, T. et al. Proc. Ocean Drilling Program, Initial Reports Vol. 185 (Ocean Drilling Program, 2000)

  69. Staudigel, H., Plank, T., White, B. & Schmincke, H.-U. Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418. Geophys. Monogr. Ser. 96, 19–38 (1996)

    Google Scholar 

  70. Shiel, A. E. et al. No measurable changes in 238U/235U due to desorption–adsorption of U(VI) from groundwater at the Rifle, Colorado, integrated field research challenge site. Environ. Sci. Technol. 47, 2535–2541 (2013)

    ADS  CAS  PubMed  Google Scholar 

  71. Bigeleisen, J. Nuclear size and shape effects in chemical reactions. Isotope chemistry of heavy elements. J. Am. Chem. Soc. 118, 3676–3680 (1996)

    CAS  Google Scholar 

  72. Fujii, Y., Higuchi, N., Haruno, Y., Nomura, M. & Suzuki, T. Temperature dependence of isotope effects in uranium chemical exchange reactions. J. Nucl. Sci. Technol. 43, 400–406 (2006)

    CAS  Google Scholar 

  73. Murphy, M. J., Stirling, C. H., Kaltenbach, A., Turner, S. P. & Schaefer, B. F. Fractionation of 238U/235U by reduction during low temperature uranium mineralisation processes. Earth Planet. Sci. Lett. 388, 306–317 (2014)

    ADS  CAS  Google Scholar 

  74. Brennecka, G. A., Borg, L. E., Hutcheon, I. D., Sharp, M. A. & Anbar, A. D. Natural variations in uranium isotope ratios of uranium ore concentrates: understanding the 238U/235U fractionation mechanism. Earth Planet. Sci. Lett. 291, 228–233 (2010)

    ADS  CAS  Google Scholar 

  75. Bopp, C. J. et al. Uranium 238U/235U isotope ratios as indicators of reduction: results from an in situ biostimulation experiment at Rifle, Colorado, USA. Environ. Sci. Technol. 44, 5927–5933 (2010)

    ADS  CAS  PubMed  Google Scholar 

  76. Romaniello, S. J., Brennecka, G. A., Anbar, A. D. & Colman, A. S. Natural isotopic fractionation of 238U/235U in the water column of the Black Sea. Eos Trans. AGU. 90, 52, V54C–06 (2009)

    Google Scholar 

  77. Partin, C. A. et al. Large-scale fluctuations in Precambrian atmospheric and oceanic oxygen levels from the record of U in shales. Earth Planet. Sci. Lett. 369-370, 284–293 (2013)

    ADS  CAS  Google Scholar 

  78. Noordmann, J. et al. Fractionation of 238U/235U during weathering and hydrothermal alteration. Mineral. Mag. 76, A1548 (2012)

    Google Scholar 

  79. Class, C. & Goldstein, S. L. Plume-lithosphere interactions in the ocean basins: constraints from the source mineralogy. Earth Planet. Sci. Lett. 150, 245–260 (1997)

    ADS  CAS  Google Scholar 

  80. Lundstrom, C., Hoernle, K. & Gill, J. U-series disequilibria in volcanic rocks from the Canary Islands: plume versus lithospheric melting. Geochim. Cosmochim. Acta 67, 4153–4177 (2003)

    ADS  CAS  Google Scholar 

  81. Elliott, T., Blichert-Toft, J., Heumann, A., Koetsier, G. & Forjaz, V. The origin of enriched mantle beneath Sao Miguel, Azores. Geochim. Cosmochim. Acta 71, 219–240 (2007)

    ADS  CAS  Google Scholar 

  82. Turner, S., Hawkesworth, C., Rogers, N. & King, P. U-Th isotope disequilibria and ocean island basalt generation in the Azores. Chem. Geol. 139, 145–164 (1997)

    ADS  CAS  Google Scholar 

  83. Graham, D., Lupton, J., Albarède, F. & Condomines, M. Extreme temporal homogeneity of helium-isotopes at Piton-De-La-Fournaise, Réunion Island. Nature 347, 545–548 (1990)

    ADS  CAS  Google Scholar 

  84. Willbold, M. & Stracke, A. Trace element composition of mantle endmembers: implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 7, 2005GC001005 (2006)

    Google Scholar 

  85. Patterson, C. C. Age of meteorites and the Earth. Geochim. Cosmochim. Acta 10, 230–237 (1956)

    ADS  CAS  Google Scholar 

  86. Chauvel, C., Lewin, E., Carpentier, M., Arndt, N. T. & Marini, J.-C. Role of recycled oceanic basalt and sediment in generating the Hf–Nd mantle array. Nature Geosci. 1, 64–67 (2008)

    ADS  CAS  Google Scholar 

  87. Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520 (1994)

    ADS  CAS  Google Scholar 

  88. Elliott, T. Fractionation of U and Th during mantle melting: a reprise. Chem. Geol. 139, 165–183 (1997)

    ADS  CAS  Google Scholar 

  89. Hauri, E. H., Shimizu, N., Dieu, J. J. & Hart, S. R. Evidence for hotspot-related carbonatite metasomatism in the oceanic upper mantle. Nature 365, 221–227 (1993)

    ADS  CAS  Google Scholar 

  90. Wright, E. & White, W. M. The origin of Samoa: new evidence from Sr, Nd, and Pb isotopes. Earth Planet. Sci. Lett. 81, 151–162 (1987)

    ADS  CAS  Google Scholar 

  91. McLennan, S. M. & Taylor, S. R. Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature 285, 621–624 (1980)

    ADS  CAS  Google Scholar 

  92. Jackson, M. G. et al. The return of subduction continental crust in Samoan lavas. Nature 448, 684–687 (2007)

    ADS  CAS  PubMed  Google Scholar 

  93. Staudigel, H. & Hart, S. R. Alteration of basaltic glass: mechanisms and significance for the oceanic crust-seawater budget. Geochim. Cosmochim. Acta 47, 337–350 (1983)

    ADS  CAS  Google Scholar 

  94. Chauvel, C., Hofmann, A. W. & Vidal, P. HIMU-EM: the French Polynesian connection. Earth Planet. Sci. Lett. 110, 99–119 (1992)

    ADS  CAS  Google Scholar 

  95. Pietruszka, A. J. & Garcia, M. O. The size and shape of Kilauea Volcano's summit magma storage reservoir: a geochemical probe. Earth Planet. Sci. Lett. 167, 311–320 (1999)

    ADS  CAS  Google Scholar 

  96. Sims, K. W. W. et al. Mechanisms of magma generation beneath Hawaii and mid-ocean ridges: uranium/thorium and samarium/neodymium isotopic evidence. Science 267, 508–512 (1995)

    ADS  CAS  PubMed  Google Scholar 

  97. Sims, K. W. W. et al. Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: inferences from 238U- 230Th-226Ra and 235U-231Pa disequilibria. Geochim. Cosmochim. Acta 63, 4119–4138 (1999)

    ADS  CAS  Google Scholar 

  98. Kokfelt, T. F. et al. Combined trace element and Pb-Nd–Sr-O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume. J. Petrol. 47, 1705–1749 (2006)

    ADS  CAS  Google Scholar 

  99. Kokfelt, T. F., Hoernle, K. & Hauff, F. Upwelling and melting of the Iceland plume from radial variation of 238U-230Th disequilibria in postglacial volcanic rocks. Earth Planet. Sci. Lett. 214, 167–186 (2003)

    ADS  CAS  Google Scholar 

  100. Prytulak, J. & Elliott, T. Determining melt productivity of mantle sources from 238U-230Th and 235U–231Pa disequilibria; an example from Pico Island, Azores. Geochim. Cosmochim. Acta 73, 2103–2122 (2009)

    ADS  CAS  Google Scholar 

  101. Prytulak, J. et al. Melting versus contamination effects on 238U-230Th-226Ra and 235U-231Pa disequilibria in lavas from Sao Miguel, Azores. Chem. Geol. 381, 94–109 (2014)

    ADS  CAS  Google Scholar 

  102. Elliott, T. Element Fractionation in the Petrogenesis of Ocean Island Basalts 29–92. PhD thesis, Open Univ. (1991)

    Google Scholar 

  103. Marcantonio, F., Zindler, A., Elliott, T. & Staudigel, H. Os isotope systematics of La Palma, Canary Islands: evidence for recycled crust in the mantle source of HIMU ocean islands. Earth Planet. Sci. Lett. 133, 397–410 (1995)

    ADS  CAS  Google Scholar 

  104. Hémond, C., Devey, C. W. & Chauvel, C. Source compositions and melting processes in the Society and Austral plumes (South Pacific Ocean): element and isotope (Sr, Nd, Pb, Th) geochemistry. Chem. Geol. 115, 7–45 (1994)

    ADS  Google Scholar 

  105. Sims, K. W. W. & Hart, S. R. Comparison of Th, Sr, Nd and Pb isotopes in oceanic basalts: implications for mantle heterogeneity and magma genesis. Earth Planet. Sci. Lett. 245, 743–761 (2006)

    ADS  CAS  Google Scholar 

  106. Bosch, D. et al. Pb, Hf and Nd isotope compositions of the two Réunion volcanoes (Indian Ocean): a tale of two small-scale mantle “blobs”? Earth Planet. Sci. Lett. 265, 748–765 (2008)

    ADS  CAS  Google Scholar 

  107. Sigmarsson, O., Condomines, M. & Bachèlery, P. Magma residence time beneath the Piton de la Fournaise Volcano, Reunion Island, from U-series disequilibria. Earth Planet. Sci. Lett. 234, 223–234 (2005)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this research was provided by NERC grant NE/H023933/1. We thank the Natural History Museum, London, and M. Anand for providing meteorite samples. H. Staudigel and T. Plank were instrumental in producing and curating AOC composite samples. We are grateful to C. Taylor for careful picking of MORB glasses, E. Melekhova for preparing the quenched glass, D. Vance for comments and C. Coath for maintenance of the mass spectrometers.

Author information

Authors and Affiliations

Authors

Contributions

Analytical set-up was done by M.B.A. Sample preparation and analyses were carried out by M.B.A. and H.F. MORB samples and AOC composites were provided by K.W.W.S., Y.N. and K.A.K. All authors contributed with discussions. T.E. carried out the Pb modelling. T.E. and M.B.A. prepared the manuscript.

Corresponding author

Correspondence to Morten B. Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Data can be found in the EarthChem portal (http://www.iedadata.org). The nine-digit IGNS numbers for the sample set starts with ‘IEMBA’.

Extended data figures and tables

Extended Data Figure 1 δ238U reproducibility of standards.

Repeated δ238U measurements of a range of standards with different matrixes (CZ-1 uraninite, BHVO-2/LP 45 E basalts, seawater) are shown. All have external reproducibility (2 s.d., grey shaded area) better than ±0.30‰, a similar range to the internal measurement uncertainty (2 s.e.) for individual samples (Methods). The different symbols refer to the different measurement set-ups (Supplementary Table 4).

Extended Data Figure 2 U–Th geochemistry of analysed meteorites.

a, δ238U versus U concentration for ordinary chondrites (black diamonds, ‘finds’; red diamonds, ‘falls’). b, δ238U versus (234U/238U) for ordinary chondrites (symbols as in a) and eucrites (blue circles). c, δ238U versus Th/U for the same samples as in a and b. d, A ‘Caltech plot’ of the δ238U of individual meteorite samples and averages based on (1) the only two meteorites with (234U/238U) within error of secular equilibrium (‘Mean (Z+J)’) and (2) all of the analysed meteorites (‘Mean all’). Error bars denote 2 s.e.m.

Extended Data Figure 3 U–Th isotope systematics in the OIB used for Pb age modelling.

Symbol colours are as in Fig. 3: (1) Hawaii, (2) Iceland, (3) Azores I, (4) La Palma, (5) French Polynesia, (6) Samoa, (7) Azores II, (8) Réunion. References can be found in Extended Data Table 1. Note that the y axis shows activity ratio whereas the x axis shows a weight ratio. The dashed line represents secular equilibrium of (230Th/238U).

Extended Data Table 1 Literature compilation of Pb, U and Th in Ocean Island Basalts
Extended Data Table 2 Input parameters for calculating Pb model ages

Supplementary information

Supplementary Table 1

U isotopic compositions and supplementary data for samples. (XLSX 20 kb)

Supplementary Table 2

Reductive MORB cleaning: U to refractory element ratios and percentages of leached U, Th and Pb. (XLSX 16 kb)

Supplementary Table 3

IRMM-3636 spike calibration using repeat. (XLSX 10 kb)

Supplementary Table 4

Standard reproducibility (normalised to CRM145). (XLSX 23 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andersen, M., Elliott, T., Freymuth, H. et al. The terrestrial uranium isotope cycle. Nature 517, 356–359 (2015). https://doi.org/10.1038/nature14062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14062

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing