Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Global protected area expansion is compromised by projected land-use and parochialism

Abstract

Protected areas are one of the main tools for halting the continuing global biodiversity crisis1,2,3,4 caused by habitat loss, fragmentation and other anthropogenic pressures5,6,7,8. According to the Aichi Biodiversity Target 11 adopted by the Convention on Biological Diversity, the protected area network should be expanded to at least 17% of the terrestrial world by 2020 (http://www.cbd.int/sp/targets). To maximize conservation outcomes, it is crucial to identify the best expansion areas. Here we show that there is a very high potential to increase protection of ecoregions and vertebrate species by expanding the protected area network, but also identify considerable risk of ineffective outcomes due to land-use change and uncoordinated actions between countries. We use distribution data for 24,757 terrestrial vertebrates assessed under the International Union for the Conservation of Nature (IUCN) ‘red list of threatened species’9, and terrestrial ecoregions10 (827), modified by land-use models for the present and 2040, and introduce techniques for global and balanced spatial conservation prioritization. First, we show that with a coordinated global protected area network expansion to 17% of terrestrial land, average protection of species ranges and ecoregions could triple. Second, if projected land-use change by 2040 (ref. 11) takes place, it becomes infeasible to reach the currently possible protection levels, and over 1,000 threatened species would lose more than 50% of their present effective ranges worldwide. Third, we demonstrate a major efficiency gap between national and global conservation priorities. Strong evidence is shown that further biodiversity loss is unavoidable unless international action is quickly taken to balance land-use and biodiversity conservation. The approach used here can serve as a framework for repeatable and quantitative assessment of efficiency, gaps and expansion of the global protected area network globally, regionally and nationally, considering current and projected land-use pressures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Global priority map for the expansion of the PA system.
Figure 2: Cumulative average coverage of species ranges in different fractions of terrestrial land.
Figure 3: Global and national priority expansion areas (2040), and their overlap (38% of top 17% priority areas).

References

  1. Rodrigues, A. S. L. et al. Effectiveness of the global protected area network in representing species diversity. Nature 428, 640–643 (2004)

    ADS  CAS  PubMed  Google Scholar 

  2. Butchart, S. H. M. et al. Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE 7, e32529 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Le Saout, S. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013)

    ADS  CAS  PubMed  Google Scholar 

  5. Butchart, S. H. M. et al. Global biodiversity: indicators of recent declines. Science 328, 1164–1168 (2010)

    ADS  CAS  PubMed  Google Scholar 

  6. Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010)

    ADS  CAS  PubMed  Google Scholar 

  7. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011)

    ADS  CAS  PubMed  Google Scholar 

  8. Laurance, W. F. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012)

    ADS  CAS  PubMed  Google Scholar 

  9. The International Union for the Conservation of Nature. The IUCN Red List of Threatened Species. Version 2013. 2 http://www.iucnredlist.org (2013)

  10. Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, 933–938 (2001)

    Google Scholar 

  11. van Asselen, S. & Verburg, P. H. Land cover change or land-use intensification: simulating land system change with a global-scale land change model. Glob. Change Biol. 19, 3648–3667 (2013)

    ADS  Google Scholar 

  12. Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000)

    CAS  PubMed  Google Scholar 

  13. Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006)

    ADS  CAS  PubMed  Google Scholar 

  14. Kremen, C. et al. Aligning conservation priorities across taxa in Madagascar with high-resolution planning tools. Science 320, 222–226 (2008)

    ADS  CAS  PubMed  Google Scholar 

  15. Jenkins, C. N. & Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 142, 2166–2174 (2009)

    Google Scholar 

  16. Joppa, L. N., Visconti, P., Jenkins, C. N. & Pimm, S. L. Achieving the convention on biological diversity’s goals for plant conservation. Science 341, 1100–1103 (2013)

    ADS  CAS  PubMed  Google Scholar 

  17. Margules, C. R. & Pressey, R. L. Systematic conservation planning. Nature 405, 243–253 (2000)

    CAS  PubMed  Google Scholar 

  18. Moilanen, A., Wilson, K. A. & Possingham, H. P. Spatial Conservation Prioritization: Quantitative Methods and Computational Tools (Oxford Univ. Press, 2009)

    Google Scholar 

  19. Hoekstra, J. M., Boucher, T. M., Ricketts, T. H. & Roberts, C. Confronting a biome crisis: global disparities of habitat loss and protection. Ecol. Lett. 8, 23–29 (2005)

    Google Scholar 

  20. Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nature Clim. Change 3, 989–994 (2013)

    ADS  Google Scholar 

  21. Moilanen, A., Anderson, B. J., Arponen, A., Pouzols, F. M. & Thomas, C. D. Edge artefacts and lost performance in national versus continental conservation priority areas. Divers. Distrib. 19, 171–183 (2013)

    Google Scholar 

  22. IUCN & UNEP-WCMC. The World Database on Protected Areas (WDPA). http://www.protectedplanet.net/ (2013)

  23. Pereira, H. M. et al. Scenarios for global biodiversity in the 21st century. Science 330, 1496–1501 (2010)

    ADS  CAS  PubMed  Google Scholar 

  24. Mascia, M. B. & Pailler, S. Protected area downgrading, downsizing, and degazettement (PADDD) and its conservation implications. Conserv. Lett. 4, 9–20 (2011)

    Google Scholar 

  25. Beger, M. et al. Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biol. Conserv. 143, 565–575 (2010)

    Google Scholar 

  26. Mokany, K., Harwood, T. D., Overton, J. M., Barker, G. M. & Ferrier, S. Combining α- and β-diversity models to fill gaps in our knowledge of biodiversity. Ecol. Lett. 14, 1043–1051 (2011)

    PubMed  Google Scholar 

  27. Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010)

    ADS  CAS  PubMed  Google Scholar 

  28. Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS ONE 8, e65427 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCarthy, D. P. et al. Financial costs of meeting global biodiversity conservation targets: current spending and unmet needs. Science 338, 946–949 (2012)

    ADS  CAS  PubMed  Google Scholar 

  30. Hunter, M. L. & Hutchinson, A. The virtues and shortcomings of parochialism: conserving species that are locally rare, but globally common. Conserv. Biol. 8, 1163–1165 (1994)

    Google Scholar 

  31. Wessel, P. & Smith, W. H. F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. Solid Earth 101, 8741–8743 (1996)

    Google Scholar 

  32. BirdLife International and NatureServe. Bird Species Distribution Maps of the World. Version 3. 0 http://www.birdlife.org/datazone/info/spcdownload (2013)

  33. BirdLife International. BirdLife’s Global Species Programme. http://www.birdlife.org/datazone/species (2013)

  34. Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004)

    ADS  CAS  PubMed  Google Scholar 

  35. Schipper, J. et al. The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322, 225–230 (2008)

    ADS  CAS  PubMed  Google Scholar 

  36. Gaston, K. J. & Fuller, R. A. The sizes of species’ geographic ranges. J. Appl. Ecol. 46, 1–9 (2009)

    Google Scholar 

  37. Rondinini, C., Wilson, K. A., Boitani, L., Grantham, H. & Possingham, H. P. Tradeoffs of different types of species occurrence data for use in systematic conservation planning. Ecol. Lett. 9, 1136–1145 (2006)

    PubMed  Google Scholar 

  38. Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–119 (2008)

    PubMed  Google Scholar 

  40. Cantú-Salazar, L. & Gaston, K. J. Species richness and representation in protected areas of the Western hemisphere: discrepancies between checklists and range maps. Divers. Distrib. 19, 782–793 (2013)

    Google Scholar 

  41. Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004)

    Google Scholar 

  42. Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Strassburg, B. B. N. et al. Impacts of incentives to reduce emissions from deforestation on global species extinctions. Nature Clim. Change 2, 350–355 (2012)

    ADS  CAS  Google Scholar 

  44. Venter, O. et al. Targeting global protected area expansion for imperiled biodiversity. PLoS Biol. 12, e1001891 (2014)

    PubMed  PubMed Central  Google Scholar 

  45. Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013)

    Google Scholar 

  46. Somveille, M., Manica, A., Butchart, S. H. M. & Rodrigues, A. S. L. Mapping global diversity patterns for migratory birds. PLoS ONE 8, e70907 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns: scale and species-richness patterns. Ecol. Lett. 8, 224–239 (2005)

    Google Scholar 

  48. Schulman, L., Toivonen, T. & Ruokolainen, K. Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation: Amazonian collecting and range estimation. J. Biogeogr. 34, 1388–1399 (2007)

    Google Scholar 

  49. OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction. http://www.oecd.org/environment/oecdenvironmentaloutlookto2050theconsequencesofinaction.htm (2012)

  50. Balmford, A., Green, R. & Phalan, B. What conservationists need to know about farming. Proc. R. Soc. B 279, 2714–2724 (2012)

    PubMed  PubMed Central  Google Scholar 

  51. Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116 (2014)

    PubMed  Google Scholar 

  52. Leathwick, J. R., Moilanen, A., Ferrier, S. & Julian, K. Complementarity-based conservation prioritization using a community classification, and its application to riverine ecosystems. Biol. Conserv. 143, 984–991 (2010)

    Google Scholar 

  53. Moilanen, A. et al. Zonation — Spatial Conservation Planning Methods and Software Version 4, User Manual (Univ. Helsinki, 2014)

  54. Mendenhall, C. D., Karp, D. S., Meyer, C. F. J., Hadly, E. A. & Daily, G. C. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014)

    ADS  CAS  PubMed  Google Scholar 

  55. Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. Trans. R. Soc. B 366, 2633–2641 (2011)

    Google Scholar 

  56. Salafsky, N. et al. A standard lexicon for biodiversity conservation: unified classifications of threats and actions. Conserv. Biol. 22, 897–911 (2008)

    PubMed  Google Scholar 

  57. Rodrigues, A. S. L. Improving coarse species distribution data for conservation planning in biodiversity-rich, data-poor, regions: no easy shortcuts. Anim. Conserv. 14, 108–110 (2011)

    Google Scholar 

  58. Arponen, A., Heikkinen, R. K., Thomas, C. D. & Moilanen, A. The value of biodiversity in reserve selection: representation, species weighting, and benefit functions. Conserv. Biol. 19, 2009–2014 (2005)

    Google Scholar 

  59. Lehtomäki, J. & Moilanen, A. Methods and workflow for spatial conservation prioritization using Zonation. Environ. Model. Softw. 47, 128–137 (2013)

    Google Scholar 

  60. Lehtomäki, J., Tomppo, E., Kuokkanen, P., Hanski, I. & Moilanen, A. Applying spatial conservation prioritization software and high-resolution GIS data to a national-scale study in forest conservation. For. Ecol. Manage. 258, 2439–2449 (2009)

    Google Scholar 

  61. Margules, C. & Sarkar, S. Systematic Conservation Planning (Cambridge Univ. Press, 2007)

    Google Scholar 

  62. Kukkala, A. S. & Moilanen, A. Core concepts of spatial prioritisation in systematic conservation planning. Biol. Rev. Camb. Philos. Soc. 88, 443–464 (2013)

    PubMed  Google Scholar 

  63. Moilanen, A. Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol. Conserv. 134, 571–579 (2007)

    Google Scholar 

  64. Laitila, J. & Moilanen, A. Use of many low-level conservation targets reduces high-level conservation performance. Ecol. Modell. 247, 40–47 (2012)

    Google Scholar 

  65. Butchart, S. H. M. et al. Measuring global trends in the status of biodiversity: red list indices for birds. PLoS Biol. 2, e383 (2004)

    PubMed  PubMed Central  Google Scholar 

  66. Balmford, A., Gaston, K. J., Blyth, S., James, A. & Kapos, V. Global variation in terrestrial conservation costs, conservation benefits, and unmet conservation needs. Proc. Natl Acad. Sci. USA 100, 1046–1050 (2003)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Moore, J., Balmford, A., Allnutt, T. & Burgess, N. Integrating costs into conservation planning across Africa. Biol. Conserv. 117, 343–350 (2004)

    Google Scholar 

  68. Naidoo, R. & Iwamura, T. Global-scale mapping of economic benefits from agricultural lands: Implications for conservation priorities. Biol. Conserv. 140, 40–49 (2007)

    Google Scholar 

  69. Eklund, J., Arponen, A., Visconti, P. & Cabeza, M. Governance factors in the identification of global conservation priorities for mammals. Philos. Trans. R. Soc. B 366, 2661–2669 (2011)

    Google Scholar 

  70. Waldron, A. et al. Targeting global conservation funding to limit immediate biodiversity declines. Proc. Natl Acad. Sci. USA 110, 12144–12148 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vincent, J. R. et al. Tropical countries may be willing to pay more to protect their forests. Proc. Natl Acad. Sci. USA 111, 10113–10118 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodrigues, A. S. L. & Gaston, K. J. Rarity and conservation planning across geopolitical units. Conserv. Biol. 16, 674–682 (2002)

    Google Scholar 

  73. Kark, S., Levin, N., Grantham, H. S. & Possingham, H. P. Between-country collaboration and consideration of costs increase conservation planning efficiency in the Mediterranean Basin. Proc. Natl Acad. Sci. USA 106, 15368–15373 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gustafsson, L. et al. Natural versus national boundaries: the importance of considering biogeographical patterns in forest conservation policy. Conserv. Lett. http://dx.doi.org/10.1111/conl.12087 (13 February 2014)

  75. Mazor, T., Possingham, H. P. & Kark, S. Collaboration among countries in marine conservation can achieve substantial efficiencies. Divers. Distrib. 19, 1380–1393 (2013)

    Google Scholar 

  76. Moilanen, A. & Arponen, A. Administrative regions in conservation: balancing local priorities with regional to global preferences in spatial planning. Biol. Conserv. 144, 1719–1725 (2011)

    Google Scholar 

  77. Mittermeier, R. A. et al. Hotspots Revisited: Earth’s Biologically Richest and Most Endangered Terrestrial Ecoregions (Conservation International, 2005)

  78. Potapov, P. et al. Mapping the world’s intact forest landscapes by remote sensing. Ecol. Soc. 13, 51 (2008)

    Google Scholar 

  79. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000)

    ADS  CAS  PubMed  Google Scholar 

  80. Davis, S. D., Heywood, V. H. & Hamilton, A. C. Centres of Plant Diversity. http://www.unep-wcmc.org/resources-and-data (2013)

  81. Eken, G. et al. Key biodiversity areas as site conservation targets. Bioscience 54, 1110–1118 (2004)

    Google Scholar 

  82. Knight, A. T. et al. Improving the key biodiversity areas approach for effective conservation planning. Bioscience 57, 256–261 (2007)

    Google Scholar 

  83. BirdLife International, Conservation International, IUCN & UNEP-WCMC. Protected Area and Key Biodiversity Area. Data downloaded from the Integrated Biodiversity Assessment Tool (IBAT) https://www.ibat-alliance.org/ibat-conservation (2014)

  84. Ambal, R. G. R. et al. Key biodiversity areas in the Philippines: priorities for conservation. J. Threat. Taxa 4, 2788–2796 (2012)

    Google Scholar 

  85. Conservation International. Priority Sites for Conservation in the Philippines: Key Biodiversity Areas. http://www.conservation.org/global/philippines/publications/Documents/KBA_Booklet.pdf (2006)

  86. Tordoff, A. W., Baltzer, M. C., Fellowes, J. R., Pilgrim, J. D. & Langhammer, P. F. Key biodiversity areas in the Indo-Burma Hotspot: process, progress and future directions. J. Threat. Taxa 4, 2779–2787 (2012)

    Google Scholar 

  87. SAPM. Les sites du Système des Aires Protégées de Madagascar. Shapefile des sites du SAPM. Arrêté Interministériel n°9874/2013 Modifiant Certaines Dispositions de l’Arrêté n°52005/2010. http://atlas.rebioma.net/ (2014)

  88. Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012)

    PubMed  Google Scholar 

  89. Arponen, A., Lehtomäki, J., Leppänen, J., Tomppo, E. & Moilanen, A. Effects of connectivity and spatial resolution of analyses on conservation prioritization across large extents. Conserv. Biol. 26, 294–304 (2012)

    PubMed  Google Scholar 

  90. Myers, J. L., Well, A. & Lorch, R. F. Research Design and Statistical Analysis. (Routledge, 2010)

    Google Scholar 

  91. Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 41, 211–221 (2014)

    Google Scholar 

Download references

Acknowledgements

F.M.P., T.T., E.D.M., A.S.K., P.K., J.L. and A.M. thank the European Research Council Starting Grant (ERC-StG) 260393 (Global Environmental Decision Analysis, GEDA), the Academy of Finland centre of excellence programme 2012–2017 and the Natural Heritage Services (Metsähallitus) for support. P.H.V. thanks the ERC grant 311819 (GLOLAND). We thank A. Santangeli, I. Hanski and H. Tuomisto for comments on the manuscript, and CSC-IT Center for Science Ltd, administered by the Ministry of Education, Science and Culture of Finland, for its support and high-performance computing services. We are grateful for the efforts of data providers, IUCN, BirdLife International, Conservation International, the IUCN Species Survival Commission Specialist Groups and IUCN Red List Partners, the World Wildlife Fund, the United Nations Environment Programme (UNEP) World Conservation Monitoring Centre and the IUCN World Commission on Protected Areas, and their partners and contributors for kindly providing publicly available data, without which this and many other studies would not have been possible.

Author information

Authors and Affiliations

Authors

Contributions

F.M.P., T.T. and A.M. wrote the manuscript, with contributions from all authors. F.M.P., T.T., E.D.M., J.L., P.K. and A.M. designed the study. A.M. conceived and led the study. F.M.P. and T.T. analysed the data and prepared the figures and tables. F.M.P. implemented prioritization algorithms and analyses. T.T., E.D.M., A.S.K., P.K., J.K., J.L., H.T. and F.M.P. collected and processed the data. P.H.V. contributed land-use models and data. T.T., E.D.M., A.S.K., P.K., J.K., J.L., H.T. and F.M.P. collected and processed the data.

Corresponding authors

Correspondence to Federico Montesino Pouzols, Tuuli Toivonen or Atte Moilanen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Original results data and additional interactive visualizations are available online at http://avaa.tdata.fi/web/cbig/.

Extended data figures and tables

Extended Data Figure 1 Changes in spatial conservation priority between present and future (2040).

ad, The top areas for PA expansion remain relatively stable: the congruence between priority expansion areas for present and projected future land use is 77.9%. Despite relatively high congruence (Supplementary Information), there are important localized differences. The biggest declines in priority would happen in China (d), India (c), eastern Europe and Turkey (b), whereas the changes are more subtle in sub-Saharan Africa and the Americas.

Extended Data Figure 2 Box plots of protection of effective range (species) and effective extent (ecoregions) in the expanded global PA system, under projected future (2040) land-use conditions.

a, b, Summaries of coverage for species grouped by taxonomic groups (classes) (a) and IUCN status (b). c, Ecoregions grouped by biome. These box plots show median values, twenty-fifth and seventy-fifth percentiles (boxes), whiskers (1.5 times the interquartile range) and outliers. Protection levels are well balanced for different species groups, and between species and ecoregions. Protection levels tend to be lower for less threatened species, as these tend to have wider ranges.

Extended Data Figure 3 Box plots of loss of effective range (species) and effective extent (ecoregions) from projected land-use changes by 2040.

a, Species grouped by taxonomic groups (classes), distinguishing small-range species (range size <50,000 km2). b, Species grouped by IUCN threat status. c, Ecoregions grouped by biome. The proportion of species that are expected to lose a significant fraction of their habitat is higher for species with a higher threat status.

Extended Data Figure 4 Comparison of priority areas for threatened species, and all species and ecoregions, both considering projected future land-use (2040).

ad, The overall overlap of the respective top 17% priority areas is 62%. Priorities are highly congruent in most biodiversity hotspots of the world. More top priority areas are identified for threatened species in the tropics, whereas there are more top priority areas in higher latitudes for ecoregions and all vertebrate species. IUCN threat categories: critically endangered (CR), endangered (EN) and vulnerable (VU).

Extended Data Figure 5 Global expansion priority areas for projected future (2040) land-use.

ad, Some of the areas in which the largest spatially contiguous overlaps occur are highlighted. Areas that overlap with biodiversity hotspots (full red) and those outside hotspots (green) are shown.

Extended Data Figure 6 Stacked bar plot showing the distributions of 17% expansion areas across different continents (left) and biomes (right), for future (2040) land-use.

When following national priorities, the distribution of expansion areas tends to be more balanced between biomes, at the expense of lower average protection of species and ecoregions, particularly favouring grasslands over tropical forests. The continental responsibility for Asia is virtually independent on whether national or global priorities are followed, whereas if planning is made nationally, responsibility clearly increases in Africa and North America and decrease in Central and South America. These patterns are stable across time (Supplementary Information).

Extended Data Table 1 Species with projected effective range loss above 30, 50 and 70% for land-use change projected for 2040
Extended Data Table 2 Summary of protection levels of species ranges and ecoregions area for the expanded (17%) PA system

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data 1-6, which include Supplementary Figures 1-56 and Supplementary Tables 1-24 – see Contents for more information. (PDF 10461 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montesino Pouzols, F., Toivonen, T., Di Minin, E. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014). https://doi.org/10.1038/nature14032

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14032

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing