The contribution of the Precambrian continental lithosphere to global H2 production

Abstract

Microbial ecosystems can be sustained by hydrogen gas (H2)-producing water–rock interactions in the Earth’s subsurface and at deep ocean vents1,2,3,4. Current estimates of global H2 production from the marine lithosphere by water–rock reactions (hydration) are in the range of 1011 moles per year5,6,7,8,9. Recent explorations of saline fracture waters in the Precambrian continental subsurface have identified environments as rich in H2 as hydrothermal vents and seafloor-spreading centres1,2 and have suggested a link between dissolved H2 and the radiolytic dissociation of water10,11. However, extrapolation of a regional H2 flux based on the deep gold mines of the Witwatersrand basin in South Africa11 yields a contribution of the Precambrian lithosphere to global H2 production that was thought to be negligible (0.009 × 1011 moles per year)6. Here we present a global compilation of published and new H2 concentration data obtained from Precambrian rocks and find that the H2 production potential of the Precambrian continental lithosphere has been underestimated. We suggest that this can be explained by a lack of consideration of additional H2-producing reactions, such as serpentinization, and the absence of appropriate scaling of H2 measurements from these environments to account for the fact that Precambrian crust represents over 70 per cent of global continental crust surface area12. If H2 production via both radiolysis and hydration reactions is taken into account, our estimate of H2 production rates from the Precambrian continental lithosphere of 0.36–2.27 × 1011 moles per year is comparable to estimates from marine systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Precambrian rocks of the continental crust.

References

  1. 1

    Lin, L.-H. et al. Long-term sustainability of a high-energy, low-diversity crustal biome. Science 314, 479–482 (2006)

    ADS  CAS  Google Scholar 

  2. 2

    Sherwood Lollar, B. et al. Hydrogeologic controls on episodic H2 release from Precambrian fractured rocks—energy for deep subsurface life on Earth and Mars. Astrobiology 7, 971–986 (2007)

    ADS  CAS  Google Scholar 

  3. 3

    D’Hondt, S. et al. Subseafloor sedimentary life in the South Pacific gyre. Proc. Natl Acad. Sci. USA 106, 11651–11656 (2009)

    ADS  Google Scholar 

  4. 4

    Schrenk, M. O., Brazelton, W. J. & Lang, S. Q. Serpentinization, carbon, and deep life. Rev. Mineral. Geochem. 75, 575–606 (2013)

    CAS  Google Scholar 

  5. 5

    Bach, W. & Edwards, K. J. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim. Cosmochim. Acta 67, 3871–3887 (2003)

    ADS  CAS  Google Scholar 

  6. 6

    Sleep, N. H. & Bird, D. K. Niches of the pre-photosynthetic biosphere and geologic preservation of the Earth’s earliest ecology. Geobiology 5, 101–117 (2007)

    CAS  Google Scholar 

  7. 7

    Canfield, D. E., Rosing, M. T. & Bjerrum, C. Early anaerobic metabolisms. Phil. Trans. R. Soc. Lond. B 361, 1819–1836 (2006)

    CAS  Google Scholar 

  8. 8

    Cannat, M., Fontaine, F. & Escartin, J. Serpentinization and associated hydrogen and methane fluxes at slow spreading ridges. AGU Geophys. Monogr. Ser. 188, 241–264 (2010)

    CAS  Google Scholar 

  9. 9

    Kasting, J. F. & Canfield, D. E. in Fundamentals of Geobiology (eds Knoll, A. H., Canfield, D. E. & Konhauser, K. O. ) Ch. 7, 93–104 (Blackwell, 2012)

    Google Scholar 

  10. 10

    Lin, L.-H., Slater, G. F., Sherwood Lollar, B., Lacrampe-Couloume, G. & Onstott, T. C. The yield and isotopic composition of radiolytic H2, a potential energy source for the deep subsurface biosphere. Geochim. Cosmochim. Acta 69, 893–903 (2005a)

    ADS  CAS  Google Scholar 

  11. 11

    Lin, L.-H. et al. Radiolytic H2 in the continental crust: nuclear power for deep subsurface microbial communities. Geochem. Geophys. Geosyst. 6, Q07003 (2005b)

    ADS  Google Scholar 

  12. 12

    Goodwin, A. M. Principles of Precambrian Geology (Academic, 1996)

    Google Scholar 

  13. 13

    Lippmann-Pipke, J. et al. Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem. Geol. 283, 287–296 (2011)

    ADS  CAS  Google Scholar 

  14. 14

    Holland, G. et al. Deep fracture fluids isolated in the crust since the Precambrian. Nature 497, 357–360 (2013)

    ADS  CAS  Google Scholar 

  15. 15

    Ballentine, C. J. & Burnard, P. G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 47, 481–538 (2002)

    CAS  Google Scholar 

  16. 16

    Bethke, C. M. A numerical model of compaction-driven groundwater flow and heat transfer and its appplication to the paleohydrology of intracratonic sedimentary basins. J. Geophys. Res. 90, 6817–6828 (1985)

    ADS  Google Scholar 

  17. 17

    Nordstrom, D. K., Lindblom, S., Donahoe, R. J. & Barton, C. C. Fluid inclusions in the Stripa granite and their possible influence on the groundwater chemistry. Geochim. Cosmochim. Acta 53, 1741–1755 (1989)

    ADS  CAS  Google Scholar 

  18. 18

    Kelley, D. S. et al. A serpentinite-hosted ecosystem: the Lost City Hydrothermal Field. Science 307, 1428–1434 (2005)

    ADS  CAS  Google Scholar 

  19. 19

    Proskurowski, G. et al. Abiogenic hydrocarbon production at Lost City Hydrothermal Field. Science 319, 604–607 (2008)

    CAS  Google Scholar 

  20. 20

    Lang, S. Q. et al. Microbial utilization of abiogenic carbon and hydrogen in a serpentinite-hosted system. Geochim. Cosmochim. Acta 92, 82–99 (2012)

    ADS  CAS  Google Scholar 

  21. 21

    Etiope, G. & Sherwood Lollar, B. Abiotic methane on Earth. Rev. Geophys. 51, 276–299 (2013)

    ADS  Google Scholar 

  22. 22

    Sleep, N. H., Meibom, A., Fridriksson, T., Coleman, R. G. & Bird, D. K. H2-rich fluids from serpentinization: geochemical and biotic implications. Proc. Natl Acad. Sci. USA 101, 12818–12823 (2004)

    ADS  CAS  Google Scholar 

  23. 23

    Condie, K. C. Greenstones through time. In Archean Crustal Evolution (ed. Condie, K. C. ) Ch. 3, 85–120 (Elsevier, 1994)

    Google Scholar 

  24. 24

    Bickle, M. J. Implications for melting for stabilization of the lithosphere and heat loss in the Archean. Earth Planet. Sci. Lett. 80, 314–324 (1986)

    ADS  CAS  Google Scholar 

  25. 25

    de Wit, M. & Ashwal, L. D. Greenstone Belts (Oxford Monographs on Geology and Geophysics Vol. 35, Clarendon Press, 1997)

    Google Scholar 

  26. 26

    Condie, K. C. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem. Geol. 104, 1–37 (1993)

    ADS  CAS  Google Scholar 

  27. 27

    Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995)

    ADS  Google Scholar 

  28. 28

    Onstott, T. C. et al. Martian CH4: sources, flux and detection. Astrobiology 6, 377–395 (2006)

    ADS  CAS  Google Scholar 

  29. 29

    Chorlton, L. B. Generalized Geology of the World: Bedrock Domains and Major Faults in GIS format: A Small-scale World Geology Map with an Extended Geological Attribute Database Open File 5529 (Geological Survey of Canada, 2007)

    Google Scholar 

  30. 30

    Wankel, S. D. et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nature Geosci. 4, 461–468 (2011)

    ADS  CAS  Google Scholar 

  31. 31

    Sherwood Lollar, B. et al. Evidence for bacterially generated hydrocarbon gas in Canadian Shield and Fennoscandian Shield rocks. Geochim. Cosmochim. Acta 57, 5073–5085 (1993a)

    ADS  Google Scholar 

  32. 32

    Sherwood Lollar, B. et al. Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 57, 5087–5097 (1993b)

    ADS  Google Scholar 

  33. 33

    Ward, J. A. et al. Microbial hydrocarbon gases in the Witwatersrand Basin, South Africa: implications for the deep biosphere. Geochim. Cosmochim. Acta 68, 3239–3250 (2004)

    ADS  CAS  Google Scholar 

  34. 34

    Sherwood Lollar, B. et al. Unravelling abiogenic and biogenic sources of methane in the Earth’s deep subsurface. Chem. Geol. 226, 328–339 (2006)

    ADS  CAS  Google Scholar 

  35. 35

    Vovk, I. F. in Saline Water and Gases in Crystalline Rocks Special Paper 33 (eds Fritz, P. & Frape, S. K. ) 197–210 (Geological Society of Canada, 1987)

    Google Scholar 

  36. 36

    Potter, J., Rankin, A. H. & Treloar, P. J. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks: fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia. Lithos 75, 311–330 (2004)

    ADS  CAS  Google Scholar 

  37. 37

    Pedersen, K. Microbial Processes in Radioactive Waste Disposal. Report TR-00-04 (Swedish Nuclear Fuel and Waste Management Company (SKB), 2000)

    Google Scholar 

  38. 38

    Morrill, P. L. et al. Geochemistry and geobiology of a present-day serpentinization site in California: the Cedars. Geochim. Cosmochim. Acta 109, 222–240 (2013)

    ADS  CAS  Google Scholar 

  39. 39

    Fritz, P., Clark, I. D., Fontes, J.-C., Whiticar, M. J. & Faber, E. in Water-Rock Interaction Vol. 1 Low Temperature Environments (ed Kharaka, Y. & Maest, A. S. ). 793–796 (1992)

  40. 40

    Neal, C. & Stanger, G. Hydrogen generation from mantle source rocks in Oman. Earth Planet. Sci. Lett. 66, 315–320 (1983)

    ADS  CAS  Google Scholar 

  41. 41

    Abrajano, T. A. et al. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Appl. Geochem. 5, 625–630 (1990)

    Google Scholar 

  42. 42

    Coveney, R. M., Jr, Goebel, E. D., Zeller, E. J., Dreschhoff, G. A. M. & Angine, E. E. Serpentinization and the origin of hydrogen gas in Kansas. Am. Assoc. Petrol. Geol. Bull. 71, 39–48 (1987)

    CAS  Google Scholar 

  43. 43

    Newell, K. D. et al. H2-rich and hydrocarbon gas recovered in a deep Precambrian well in Northeastern Kansas. Nat. Resour. Res. 16, 277–292 (2007)

    CAS  Google Scholar 

  44. 44

    Salters, V. J. M. & Stracke, A. Composition of the depleted mantle. Geochem. Geophys. Geosyst. 5, 1–27 (2004)

    Google Scholar 

  45. 45

    Jaehne, B., Heinz, G. & Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92, 10767–10776 (1987)

    ADS  CAS  Google Scholar 

  46. 46

    Lippmann, J. et al. Dating ultra-deep mine waters with noble gases and 36Cl, Witwatersrand Basin, South Africa. Geochim. Cosmochim. Acta 67, 4597–4619 (2003)

    ADS  CAS  Google Scholar 

  47. 47

    Aquilina, L., de Dreuzy, J. R., Bour, O. & Davy, P. Porosity and fluid velocities in the upper continental crust (2 to 4 km) inferred from injection tests at the Soultz-sous-Forets geothermal site. Geochim. Cosmochim. Acta 68, 2405–2415 (2004)

    ADS  CAS  Google Scholar 

  48. 48

    Bucher, K. & Stober, I. Fluids in the upper continental crust. Geofluids 10, 241–253 (2010)

    CAS  Google Scholar 

  49. 49

    Stober, I. Permeabilities and chemical properties of water in crystalline rocks of the Black Forest, Germany. Aquat. Geochem. 3, 43–60 (1997)

    CAS  Google Scholar 

  50. 50

    Stober, I. & Bucher, K. Hydraulic properties of the crystalline basement. Hydrogeol. J. 15, 213–224 (2007)

    ADS  CAS  Google Scholar 

  51. 51

    Silver, B. J. et al. The origin of NO3 and N2 in deep subsurface fracture water of South Africa. Chem. Geol. 294–295, 51–62 (2012)

    ADS  Google Scholar 

  52. 52

    Savary, V. & Pagel, M. The effects of water radiolysis on local redox conditions in the Oklo, Gabon natural fission reactors 10 and 16. Geochim. Cosmochim. Acta 61, 4479–4494 (1997)

    ADS  CAS  Google Scholar 

  53. 53

    Lowenstern, J. B., Evans, W. C., Bergfeld, D. & Hunt, A. G. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone. Nature 506, 355–358 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14”N, MAR). Chem. Geol. 191, 345–359 (2002)

    ADS  CAS  Google Scholar 

  55. 55

    Andreani, M., Daniel, I. & Pollet-Villard, M. Aluminum speeds up the hydrothermal alteration of olivine. Am. Mineral. 98, 1738–1744 (2013)

    ADS  CAS  Google Scholar 

  56. 56

    Mayhew, L. E., Ellison, E. T., McCollom, T. M., Trainor, T. P. & Templeton, A. S. Hydrogen generation from low-temperature water-rock reactions. Nature Geosci. 6, 478–484 (2013)

    ADS  CAS  Google Scholar 

  57. 57

    Kelemen, P. B. & Hirth, G. Reaction-driven cracking during retrograde metamorphism: olivine hydration and carbonation. Earth Planet. Sci. Lett. 345–348, 81–89 (2012)

    ADS  Google Scholar 

  58. 58

    Helgeson, H. C. in Geochemistry of Hydrothermal Ore (ed. Barnes, H. L. ) 568–610 (Wiley, 1979)

    Google Scholar 

  59. 59

    Neubeck, A., Duc, N. T., Bastviken, D., Crill, P. & Holm, N. G. Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C. Geochem. Trans. 12, http://dx.doi.org/10.1186/1467-4866-12-6 (2011)

  60. 60

    Flowers, R. M., Bowring, S. A. & Reiners, P. W. Low long-term erosion rates and extreme continental stability documented by ancient (U-Th)/He dates. Geology 34, 925–928 (2006)

    ADS  CAS  Google Scholar 

  61. 61

    McCollom, T. M. & Bach, W. Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim. Cosmochim. Acta 73, 856–875 (2009)

    ADS  CAS  Google Scholar 

  62. 62

    Stevens, T. O. & McKinley, J. P. Abiotic controls on H2 production from basalt-water reactions and implications for aquifer biogeochemistry. Environ. Sci. Technol. 34, 826–831 (2000)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

The preparation and execution of this work was supported by the Canada Research Chairs programme, NSERC Discovery and Accelerator grants to B.S.L. with additional partial funding from the Sloan Foundation Deep Carbon Observatory, Canadian Space Agency and National Science Foundation grant number EAR-0948659.f. We are grateful to K. Chu, A. Yang and G. S. Lollar (of the University of Toronto) for preparation of the maps and tables and to N. Sleep, H. D. Holland, J. Mungall and M. A. Hamilton for discussions on Precambrian geology and mineralogy. We also thank colleagues and supporters at the mines and underground research laboratories whose efforts resulted in the original primary publications from which a portion of this data set is compiled.

Author information

Affiliations

Authors

Contributions

B.S.L. designed the project and wrote the paper. B.S.L., C.J.B. and T.C.O. developed the models for H2 generation. All co-authors contributed to the interpretation and final version of the manuscript.

Corresponding author

Correspondence to Barbara Sherwood Lollar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Table 1 Volumes of mafic/ultramafic rock with H2 production potential and H2 production to depths of 1 km and 5 km
Extended Data Table 2 Estimated H2 production rates from Precambrian mafic/ultramafic rock for a 5 km volume

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lollar, B., Onstott, T., Lacrampe-Couloume, G. et al. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 516, 379–382 (2014). https://doi.org/10.1038/nature14017

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.