Evolution of mosquito preference for humans linked to an odorant receptor


Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A ‘domestic’ form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, ‘forest’ form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognizes a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialize on humans.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Field collection of forest and domestic forms of Ae. aegypti in Rabai, Kenya.
Figure 2: Forest and domestic females differ in host preference.
Figure 3: Antennal gene expression is significantly associated with preference for humans.
Figure 4: Or4 responds to sulcatone, a human odorant.
Figure 5: Tight linkage of Or4 allelic expression and sulcatone sensitivity to preference for humans.

Accession codes

Primary accessions


Sequence Read Archive

Data deposits

Raw RNA-seq data are available for download at the NCBI Sequence Read Archive (accession number SRP035216). Coding sequences of AaegOr4 alleles are at GenBank (accession numbers KF801614, KF801615 and KF801617KF801621).


  1. 1

    Lehane, M. J. The Biology of Blood-sucking in Insects (Cambridge Univ.Press, 2005)

    Google Scholar 

  2. 2

    Christophers, S. R. Aedes aegypti, the Yellow Fever Mosquito: Its Life History, Bionomics and Structure Ch. 2 (Cambridge Univ. Press, 1960)

    Google Scholar 

  3. 3

    Mattingly, P. F. Genetical aspects of the Aedes aegypti problem. I: taxonomy and bionomics. Ann. Trop. Med. Parasitol. 51, 392–408 (1957)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Brown, J. E. et al. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 68, 514–525 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Lumsden, W. H. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952–53. II. general description and epidemiology. Trans. R. Soc. Trop. Med. Hyg. 49, 33–57 (1955)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Trpis, M. & Hausermann, W. Demonstration of differential domesticity of Aedes aegypti (L) (Diptera, Culicidae) in Africa by mark-release-recapture. Bull. Entomol. Res. 65, 199–208 (1975)

    Google Scholar 

  7. 7

    Petersen, J. L. Behavioral Differences in Two Subspecies of Aedes aegypti (L.) (Diptera: Culicidae) in East Africa PhD thesis, Univ. Notre Dame (1977)

    Google Scholar 

  8. 8

    Trpis, M. & Hausermann, W. Genetics of house-entering behavior in East African populations of Aedes aegypti (L) (Diptera: Culicidae) and its relevance to speciation. Bull. Entomol. Res. 68, 521–532 (1978)

    Google Scholar 

  9. 9

    Saul, S. H., Novak, R. J. & Ross, Q. E. The role of the preadult stages in the ecological separation of 2 subspecies of Aedes aegypti. Am. Midl. Nat. 104, 118–134 (1980)

    Google Scholar 

  10. 10

    Gouck, H. K. Host preferences of various strains of Aedes aegypti and Aedes simpsoni as determined by an olfactometer. Bull. World Health Organ. 47, 680–683 (1972)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    McKenna, R. J. Attraction of Seven Strains of Aedes aegypti to Man and Guinea-pig in the Laboratory PhD thesis, Univ. California, Davis (1973)

    Google Scholar 

  12. 12

    Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Brown, J. E. et al. Worldwide patterns of genetic differentiation imply multiple ‘domestications’ of Aedes aegypti, a major vector of human diseases. Proc. R. Soc. B 278, 2446–2454 (2011)

    PubMed  PubMed Central  Google Scholar 

  14. 14

    Mukwaya, L. G. Host preference in Aedes (Stegomyia) mosquitoes in Uganda. II. Studies on indoor and outdoor biting and resting behaviour with special reference to Aedes aegypti L. Acta Trop. 31, 165–176 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Dekker, T., Geier, M. & Carde, R. Carbon dioxide instantly sensitizes female yellow fever mosquitoes to human skin odours. J. Exp. Biol. 208, 2963–2972 (2005)

    PubMed  PubMed Central  Google Scholar 

  16. 16

    Dekker, T., Ibba, I., Siju, K. P., Stensmyr, M. C. & Hansson, B. S. Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr. Biol. 16, 101–109 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Matsuo, T., Sugaya, S., Yasukawa, J., Aigaki, T. & Fuyama, Y. Odorant-binding proteins OBP57d and OBP57e affect taste perception and host–plant preference in Drosophila sechellia. PLoS Biol. 5, e118 (2007)

    PubMed  PubMed Central  Google Scholar 

  18. 18

    Linz, J. et al. Host plant-driven sensory specialization in Drosophila erecta. Proc R. Soc. B. 280, 20130626 (2013)

    PubMed  PubMed Central  Google Scholar 

  19. 19

    Rinker, D. C., Zhou, X., Pitts, R. J., Rokas, A. & Zwiebel, L. J. Antennal transcriptome profiles of anopheline mosquitoes reveal human host olfactory specialization in Anopheles gambiae. BMC Genomics 14, 749 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Wada-Katsumata, A., Silverman, J. & Schal, C. Changes in taste neurons support the emergence of an adaptive behavior in cockroaches. Science 340, 972–975 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Michelmore, R. W., Paran, I. & Kesseli, R. V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl Acad. Sci. USA 88, 9828–9832 (1991)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Robertson, H. M., Warr, C. G. & Carlson, J. R. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl Acad. Sci. USA 100 (Suppl 2). 14537–14542 (2003)

    ADS  CAS  Google Scholar 

  23. 23

    Croset, V. et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet. 6, e1001064 (2010)

    PubMed  PubMed Central  Google Scholar 

  24. 24

    Fan, J., Francis, F., Liu, Y., Chen, J. L. & Cheng, D. F. An overview of odorant-binding protein functions in insect peripheral olfactory reception. Genet. Mol. Res. 10, 3056–3069 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    DeGennaro, M. et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature 498, 487–491 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Dobritsa, A. A., van der Goes van Naters, W., Warr, C. G., Steinbrecht, R. A. & Carlson, J. R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37, 827–841 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Cork, A. & Park, K. C. Identification of electrophysiologically-active compounds for the malaria mosquito, Anopheles gambiae, in human sweat extracts. Med. Vet. Entomol. 10, 269–276 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Labows, J., Preti, G., Hoelzle, E., Leyden, J. & Kligman, A. Analysis of human axillary volatiles: compounds of exogenous origin. J. Chromatogr. 163, 294–299 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Bernier, U. R., Kline, D. L., Barnard, D. R., Schreck, C. E. & Yost, R. A. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Anal. Chem. 72, 747–756 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Syed, Z. & Leal, W. S. Acute olfactory response of Culex mosquitoes to a human- and bird-derived attractant. Proc. Natl Acad. Sci. USA 106, 18803–18808 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Birkett, M. A. et al. The role of volatile semiochemicals in mediating host location and selection by nuisance and disease-transmitting cattle flies. Med. Vet. Entomol. 18, 313–322 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Jumean, Z., Gries, R., Unruh, T., Rowland, E. & Gries, G. Identification of the larval aggregation pheromone of codling moth, Cydia pomonella. J. Chem. Ecol. 31, 911–924 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Nielsen, B. L. L., Jerôme, N., Saint-Albin, A., Rampin, O. & Maurin, Y. Behavioural response of sexually naïve and experienced male rats to the smell of 6-methyl-5-hepten-2-one and female rat faeces. Physiol. Behav. 120, 150–155 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Stoeffler, M., Maier, T. S., Tolasch, T. & Steidle, J. L. M. Foreign-language skills in rove-beetles? Evidence for chemical mimicry of ant alarm pheromones in myrmecophilous Pella beetles (Coleoptera: Staphylinidae). J. Chem. Ecol. 33, 1382–1392 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Rines, H. W., French, R. C. & Daasch, L. W. Nonanal and 6-methyl-5-hepten-2-one: endogenous germination stimulators of uredospores of Puccinia graminis var. tritici and other rusts. J. Agric. Food Chem. 22, 96–100 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Socaci, S. A. et al. Chemometric discrimination of different tomato cultivars based on their volatile fingerprint in relation to lycopene and total phenolics content. Phytochem. Anal. 25, 161–169 (2013)

    PubMed  PubMed Central  Google Scholar 

  37. 37

    Webster, B. et al. Identification of volatile compounds used in host location by the black bean aphid, Aphis fabae. J. Chem. Ecol. 34, 1153–1161 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Carey, A. F., Wang, G., Su, C. Y., Zwiebel, L. J. & Carlson, J. R. Odorant reception in the malaria mosquito Anopheles gambiae. Nature 464, 66–71 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Bohbot, J. et al. Molecular characterization of the Aedes aegypti odorant receptor gene family. Insect Mol. Biol. 16, 525–537 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Krzywinski, J., Grushko, O. G. & Besansky, N. J. Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol. Phylogenet. Evol. 39, 417–423 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Pellegrino, M., Steinbach, N., Stensmyr, M. C., Hansson, B. S. & Vosshall, L. B. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature 478, 511–514 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Keller, A., Zhuang, H., Chi, Q., Vosshall, L. B. & Matsunami, H. Genetic variation in a human odorant receptor alters odour perception. Nature 449, 468–472 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Logan, J. G. et al. Arm-in-cage testing of natural human-derived mosquito repellents. Malar. J. 9, 239 (2010)

    PubMed  PubMed Central  Google Scholar 

  44. 44

    Logan, J. G. et al. Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes. J. Chem. Ecol. 34, 308–322 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Menger, D. J., Van Loon, J. J. A. & Takken, W. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med. Vet. Entomol. http://dx.doi.org/10.1111/mve.12061 (2014)

  46. 46

    Greenwood, A. K., Wark, A. R., Yoshida, K. & Peichel, C. L. Genetic and neural modularity underlie the evolution of schooling behavior in threespine sticklebacks. Curr. Biol. 23, 1884–1888 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Weber, J. N., Peterson, B. K. & Hoekstra, H. E. Discrete genetic modules are responsible for complex burrow evolution in Peromyscus mice. Nature 493, 402–405 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Martin, A. & Orgogozo, V. The loci of repeated evolution: a catalog of genetic hotspots of phenotypic variation. Evolution 67, 1235–1250 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    van der Goes van Naters, W. & Carlson, J. R. Insects as chemosensors of humans and crops. Nature 444, 302–307 (2006)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Coyne, J. A. & Orr, H. A. Speciation Ch. 4 and 5 (Sinauer Associates, 2004)

    Google Scholar 

  51. 51

    McClelland, G. A. H. A preliminary study of genetics and abdominal colour variations in Aedes aegypti (L.). Ann. Trop. Med. Parasitol. 54, 305–320 (1960)

    Google Scholar 

  52. 52

    McClelland, G. A. H. A worldwide survey of variation in scale pattern of abdominal tergum of Aedes aegypti (L) (Diptera: Culicidae). Trans. R. Entomolog. Soc. 126, 239–259 (1974)

    Google Scholar 

  53. 53

    Mukwaya, L. Genetic control of feeding preferences in the mosquitoes Aedes (Stegomyia) simpsoni and aegypti. Physiol. Entomol. 2, 133–145 (1977)

    Google Scholar 

  54. 54

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013)

    PubMed  PubMed Central  Google Scholar 

  55. 55

    Kent, L. B., Walden, K. K. O. & Robertson, H. M. The Gr family of candidate gustatory and olfactory receptors in the yellow-fever mosquito Aedes aegypti. Chem. Senses 33, 79–93 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Zhou, J.-J., He, X., Pickett, J. & Field, L. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol. Biol. 17, 147–163 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Trapnell, C. et al. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nature Biotechnol. 31, 46–53 (2013)

    CAS  Google Scholar 

  58. 58

    Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007)

    ADS  CAS  Google Scholar 

  59. 59

    Hallem, E. A., Ho, M. & Carlson, J. The molecular basis of odor coding in the Drosophila antenna. Cell 117, 965–979 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Harraca, V., Ryne, C., Birgersson, G. & Ignell, R. Smelling your way to food: can bed bugs use our odour? J. Exp. Biol. 215, 623–629 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Stensmyr, M. C., Giordano, E., Balloi, A., Angioy, A. M. & Hansson, B. S. Novel natural ligands for Drosophila olfactory receptor neurones. J. Exp. Biol. 206, 715–724 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23, 254–267 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    CAS  Google Scholar 

  64. 64

    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)

    CAS  Google Scholar 

  65. 65

    Johns, S. J. TOPO2, transmembrane protein display software. http://www.sacs.ucsf.edu/TOPO2/

  66. 66

    Pellegrino, M., Nakagawa, T. & Vosshall, L. B. Single sensillum recordings in the insects Drosophila melanogaster and Anopheles gambiae. J. Vis. Exp. 36, 1–5 (2010)

    Google Scholar 

  67. 67

    Hallem, E. A. & Carlson, J. R. Coding of odors by a receptor repertoire. Cell 125, 143–160 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Roberts, A. & Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nature Methods 10, 71–73 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank M. K. N. Lawniczak, K. J. Lee, M. N. Nitabach, and the Vosshall laboratory for discussion and comments on the manuscript; J. E. Brown and J. R. Powell for discussion and coordination of field collections; W. Takken for advice regarding many aspects of this work; J.-P. Mutebi, B. Miller, and A. Ponlawat for live specimens from Uganda and Thailand; D. Beck, K. Nygaard, K. Prakash, and L. Seeholzer for expert technical assistance. We also thank X. Chen for pre-publication access to a draft Ae. albopictus genome assembly, and J. Liesch for access to Orlando strain RNA-seq data. We received valuable advice on collecting and working with forest and domestic forms of Ae. aegypti from M. Trpis, J. L. Peterson, and P. Lounibos, and on the design and use of two-port olfactometers from U. Bernier and V. Sherman. This work was funded in part by a grant to R. Axel and L.B.V. from the Foundation for the National Institutes of Health through the Grand Challenges in Global Health Initiative. This work was supported in part by the following National Institutes of Health grants: K99 award from NIDCD to C.S.M. (DC012069), an NIAID Vectorbase DBP subcontract to L.B.V. (HHSN272200900039C), and a CTSA award from NCATS (5UL1TR000043). R.I. received support from the Swedish Research Council and SLU: Insect Chemical Ecology and Evolution (IC-E3). L.B.V. is an investigator of the Howard Hughes Medical Institute.

Author information




C.S.M. and L.B.V. conceived the study. C.S.M. participated in the execution and analysis of all aspects of the study. J.L. helped coordinate mosquito collection in Rabai, Kenya under the supervision of R.S. S.A.S. helped design and carry out the morphological assays presented in Fig. 1e–i. F.B. helped clone, analyse, and genotype mosquitoes for the Or4 alleles presented in Fig. 5a–d, and construct transgenic Drosophila lines for use in single sensillum recordings. A.B.O. and R.I. designed, conducted, and analysed the GC–SSR and GC–MS experiments presented in Fig. 4 and carried out pilot experiments comprising dose–response curves and spontaneous activity analysis of alleles A and E, similar to those presented in Fig. 5e–g. C.S.M. and L.B.V. designed all other experiments, interpreted the results, designed the figures, and wrote the paper.

Corresponding author

Correspondence to Leslie B. Vosshall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Measuring colour and scaling of adult female Ae. aegypti mosquitoes.

a, Representative photograph used to measure scale colour (Fig. 1e, g). Red dots mark the approximate position of 4 points where the colour of dark scales on the scutum was assessed. b, Representative photograph used to measure cuticle colour (Fig. 1f, h). Red dots mark the approximate position of 4 points where the colour of bare cuticle on the circular postnotum was assessed. c, Representative photographs used to assess the extent of white scaling on the first abdominal tergite (Fig. 1i), outlined with the red rectangle. Each individual is representative of the scaling score shown at the bottom.

Extended Data Figure 2 Or4 coding sequence variation in human-preferring and guinea-pig-preferring colonies from around the world.

a, Geographical origin of colonies characterized in b and c. Circle fill colour indicates preference of strains. Circle outline colour indicates origin: Purple, laboratory strain derived from USA; blue, reference genome strain derived from West Africa; orange, Uganda; red, Kenya, green, Thailand. b, Host preference assayed in the live host olfactometer. Data for Thailand, K14, K2, K4, K27, K18, K19, and Uganda are reprinted from Fig. 2g. c, Frequency of non-synonymous single nucleotide polymorphisms (SNPs) in female antennal RNA-seq reads. SNPs are defined as differences from the A reference allele. SNPs with frequency ≤ 0.1 are not shown. Vertical black and red lines indicate SNPs that were present and absent, respectively, in the major alleles subject to functional analysis.

Extended Data Figure 3 Amino acid differences of major Or4 protein alleles.

Dots represent amino acid differences with respect to the genome reference, not an inferred ancestor. Red dots indicate differences that are unique to the given allele. Blue dots indicate differences that are shared among multiple alleles. Snake plots are based on the predicted orientation and location of transmembrane domains. Extracellular loops are oriented up and cytoplasmic loops are oriented down. Allele names are indicated to the left of each snake plot.

Extended Data Figure 4 Evidence that Or4 is a single copy gene.

a, Histogram showing the number of alleles represented in the Or4-derived PacBio reads obtained for each of 270 parent and F2 hybrid mosquitoes. Alleles were only considered if they received at least 5% of an individual’s reads. b, Histogram showing the fraction of reads from individual mosquitoes assigned to individual alleles. For all 270 mosquitoes, individual alleles were represented by either very few reads (grey bars, inferred to result from allele or barcode assignment errors or polymerase chain reaction contaminants), approximately half the reads (light blue bars, inferred to represent the two alleles in heterozygotes), or over 98% of all reads (dark blue bars, inferred to represent the single allele carried by homozygotes).

Extended Data Figure 5 Response of human-preferring mosquitoes to sulcatone-scented guinea-pig odour.

a, Olfactometer apparatus in which 50 mosquitoes per trial were given a choice between guinea-pig odour/CO2 mix supplemented with solvent on one side and sulcatone 10−4 on the other side. b, Corrected preference for sulcatone vs solvent ports is indicated. Data were corrected for the daily average left–right side bias observed across 2–3 solvent vs solvent tests conducted on each day of testing. An index value of 1 indicates strong preference for the sulcatone side, whereas −1 indicates strong preference for the solvent side. Neither mosquito colony showed a preference significantly different from zero (one-sample t-test P = 0.76 for ORL, P = 0.11 for K14). The trials for each colony were performed across 4–8 days (n = 40 for ORL and n = 22 for K14).

Supplementary information

Supplementary Table 1

This file contains accession numbers and gene names (where known) for differentially expressed genes described in Fig. 3c-g. (XLSX 26 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McBride, C., Baier, F., Omondi, A. et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature 515, 222–227 (2014). https://doi.org/10.1038/nature13964

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing