Homo erectus at Trinil on Java used shells for tool production and engraving

  • Nature volume 518, pages 228231 (12 February 2015)
  • doi:10.1038/nature13962
  • Download Citation



The manufacture of geometric engravings is generally interpreted as indicative of modern cognition and behaviour1. Key questions in the debate on the origin of such behaviour are whether this innovation is restricted to Homo sapiens, and whether it has a uniquely African origin1. Here we report on a fossil freshwater shell assemblage from the Hauptknochenschicht (‘main bone layer’) of Trinil (Java, Indonesia), the type locality of Homo erectus discovered by Eugène Dubois in 1891 (refs 2 and 3). In the Dubois collection (in the Naturalis museum, Leiden, The Netherlands) we found evidence for freshwater shellfish consumption by hominins, one unambiguous shell tool, and a shell with a geometric engraving. We dated sediment contained in the shells with 40Ar/39Ar and luminescence dating methods, obtaining a maximum age of 0.54 ± 0.10 million years and a minimum age of 0.43 ± 0.05 million years. This implies that the Trinil Hauptknochenschicht is younger than previously estimated. Together, our data indicate that the engraving was made by Homo erectus, and that it is considerably older than the oldest geometric engravings described so far4,5. Although it is at present not possible to assess the function or meaning of the engraved shell, this discovery suggests that engraving abstract patterns was in the realm of Asian Homo erectus cognition and neuromotor control.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    & Evolution, revolution or saltation scenario for the emergence of modern cultures? Phil. Trans. R. Soc. B 366, 1060–1069 (2011)

  2. 2.

    Pithecanthropus Erectus, Eine Menschenähnliche Übergangsform aus Java (Landesdruckerei, 1894)

  3. 3.

    Das geologische Alter der Kendeng- oder Trinil-fauna. Tijdschr. Kon. Ned. Aardr. Gen. 25, 1235–1270 (1908)

  4. 4.

    , & Engraved ochres from the Middle Stone Age levels at Blombos Cave, South Africa. J. Hum. Evol. 57, 27–47 (2009)

  5. 5.

    , & Technological, elemental and colorimetric analysis of an engraved ochre fragment from the Middle Stone Age levels of Klasies River Cave 1, South Africa. J. Archaeol. Sci. 39, 942–952 (2012)

  6. 6.

    , , , & Relevance of aquatic environments for hominins: a case study from Trinil (Java, Indonesia). J. Hum. Evol. 57, 656–671 (2009)

  7. 7.

    et al. Volcanic mountains, river valleys and sea coasts—the paleoenvironment of Homo erectus in eastern Java (Indonesia). Quat. Int. Spec. Issue XVIII INQUA Congr. (21st–27th July, 2011, Bern) (eds & ) 279–280, 210 (2012)

  8. 8.

    & in Caribbean Marine Biodiversity: The Known and Unknown (eds & ) 213–245 (DEStech, 2005)

  9. 9.

    & Shell tool use by early members of Homo erectus in Sangiran, central Java, Indonesia: cut mark evidence. J. Archaeol. Sci. 34, 48–58 (2007)

  10. 10.

    The Palaeolithic Settlement of Asia (Cambridge Univ. Press, 2009)

  11. 11.

    et al. Early Pleistocene 40Ar/39Ar ages for Bapang Formation hominins, Central Jawa, Indonesia. Proc. Natl Acad. Sci. USA 98, 4866–4871 (2001)

  12. 12.

    et al. Improved age control on early Homo fossils from the upper Burgi Member at Koobi Fora, Kenya. J. Hum. Evol. 65, 731–745 (2013)

  13. 13.

    et al. High-resolution record of the Matuyama–Brunhes transition constrains the age of Javanese Homo erectus in the Sangiran dome, Indonesia. Proc. Natl Acad. Sci. USA 108, 19563–19568 (2011)

  14. 14.

    et al. The age of the 20 Meter Solo River Terrace, Java, Indonesia and the survival of Homo erectus in Asia. PLoS ONE 6, e21562 (2011)

  15. 15.

    et al. Relocation of the 1936 Mojokerto skull discovery site near Perning, East Java. J. Hum. Evol. 50, 431–451 (2006)

  16. 16.

    & Maritime mammals: terrestrial mammals as consumers in marine intertidal communities. Mar. Ecol. Prog. Ser. 256, 271–286 (2003)

  17. 17.

    & Marine prey processed with stone tools by burmese long-tailed macaques (Macaca fascicularis aurea) in intertidal habitats. Am. J. Phys. Anthropol. 149, 447–457 (2012)

  18. 18.

    Java Man’s first tools. Science 312, 361 (2006)

  19. 19.

    & Neanderthal shell tool production: evidence from Middle Palaeolithic Italy and Greece. J. World Prehist. 25, 45–79 (2012)

  20. 20.

    et al. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435–451 (2012)

  21. 21.

    & Luminescence signals from modern sediments in a glaciated bay, NW Svalbard. Quat. Geochronol. 10, 250–256 (2012)

  22. 22.

    v. Non marine Mollusca from fossil horizons in Java with special reference to the Trinil fauna. Zoologische Mededelingen 20, 83–180 (1937)

  23. 23.

    & The Preparation of Mammoth-sized Thin Sections (Netherlands Soil Survey Institute, 1963)

  24. 24.

    & Guidelines for Preparation of Rock and Soil Thin Sections and Polished Sections Vol. 33 (Universitat de Lleida, 2005)

  25. 25.

    Guidelines for Analysis and Description of Soil and Regolith Thin Sections (Soil Science Society of America, 2003)

  26. 26.

    Catalogue des Mollusques Terrestres et des Eaux Douces du Département de la Haute-Loire et des Environs de Paris (Imprimerie Nationale, 1873)

  27. 27.

    , & Linear measurements of cortical bone and dental enamel by computed tomography: applications and problems. Am. J. Phys. Anthropol. 91, 469–484 (1993)

  28. 28.

    , , , & in IEEE International Conference on Image Processing (ICIP09) 2505–2508 (IEEE, 2009)

  29. 29.

    Shells (Cambridge Univ. Press, 1998)

  30. 30.

    Trampling the archaeological record: an experimental study. Am. Antiq. 56, 483–503 (1991)

  31. 31.

    & Taphonomy of recent freshwater molluscan death assemblages, Touro Passo Stream, Southern Brazil. Rev. Brasil. Paleontol. 9, 243–260 (2006)

  32. 32.

    , & in Traces et Fonction: Les Gestes Retrouvés Vol. 50 (eds , , & ) 243–254 (Editions ERAUL, 1993)

  33. 33.

    & Molluscan shell knives and experimental cut-marks on bones. J. Field Archaeol. 16, 250–255 (1989)

  34. 34.

    , , & in From Hooves to Horns, from Mollusc to Mammoth: Manufacture and Use of Bone Artefacts from Prehistoric Times to the Present. Proc. 4th Meet. ICAZ Worked Bone Research Group (Tallinn, 26–31 August 2003) Vol. 15 (eds , , & ) 319–324 (Muinasaja Teadus series, Tallinn Book Printers, 2005)

  35. 35.

    , , & Understanding the use-wears on non-retouched shells Mytilus galloprovincialis and Ruditapes decussatus by performing wood working experiment: an experimental approach. IOP Conf. Ser. Materials Science and Engineering 37, 1–10 (2012)

  36. 36.

    , & Utilización de instrumentos de concha durante el Mesolítico y Neolítico inicial en contextos litorales de la región cantábrica: programa experimental para el análisis de huellas de uso en materiales malacológicos. Trabajos Prehistoria 67, 211–225 (2010)

  37. 37.

    & A new method for the quantitative analysis of cutmark micromorphology. J. Archaeol. Sci. 35, 1542–1552 (2008)

  38. 38.

    L’Art Gravé Azilien. De la Technique à la Signification (CNRS, 1995)

  39. 39.

    La Gravure dans l'Art Mobilier Magdalénien, du Geste à la Représentation: Contribution de l'Analyse Microscopique Vol. 75 (Maison des Sciences de l’Homme, 1999)

  40. 40.

    & in Homo Symbolicus: The Dawn of Language, Imagination and Spirituality (eds & ) 75–96 (Benjamins, 2011)

  41. 41.

    et al. A Howiesons Poort tradition of engraving ostrich eggshell containers dated to 60,000 years ago at Diepkloof Rock Shelter, South Africa. Proc. Natl Acad. Sci. USA 107, 6180–6185 (2010)

  42. 42.

    et al. An engraved artifact from Shuidonggou, an early Late Paleolithic site in Northwest China. Chin. Sci. Bull. 57, 4594–4599 (2012)

  43. 43.

    et al. Synchronizing rock clocks of Earth history. Science 320, 500–504 (2008)

  44. 44.

    & Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet. Sci. Lett. 36, 359–362 (1977)

  45. 45.

    et al. A redetermination of the isotopic abundances of atmospheric Ar. Geochim. Cosmochim. Acta 70, 4507–4512 (2006)

  46. 46.

    ArArCalc—software for 40Ar/39Ar age calculations. Comput. Geosci. 28, 605–619 (2002)

  47. 47.

    et al. Luminescence dating: basics, methods and applications. Quat. Sci. J. 57, 95–149 (2008)

  48. 48.

    , , & Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiat. Meas. 43, 1474–1486 (2008)

  49. 49.

    , & Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quat. Geochronol. 12, 74–86 (2012)

  50. 50.

    , , , & A test case for anomalous fading correction in IRSL dating. Quat. Geochronol. 2, 216–221 (2007)

  51. 51.

    & A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quat. Geochronol. 7, 6–20 (2012)

  52. 52.

    Extending the dose range: Probing deep traps in quartz with 3.06 eV photons. Radiat. Meas. 44, 445–452 (2009)

  53. 53.

    , & Towards dating Quaternary sediments using the quartz Violet Stimulated Luminescence (VSL) signal. Quat. Geochronol. 18, 99–109 (2013)

  54. 54.

    , & Dose-rate conversion factors: update. Ancient TL 29, 5–8 (2011)

  55. 55.

    Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21, 61–72 (1979)

  56. 56.

    Thermoluminescence Dating (Academic Press, 1985)

  57. 57.

    & The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 11–13 (1997)

  58. 58.

    & The Rb contents of the K-feldspar grains being measured in optical dating. Ancient TL 19, 43–46 (2001)

  59. 59.

    & Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiat. Meas. 23, 497–500 (1994)

  60. 60.

    et al. Extracting storm-surge data from coastal dunes for improved assessment of flood risk. Geology 39, 1063–1066 (2011)

  61. 61.

    & The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiat. Meas. 37, 377–381 (2003)

  62. 62.

    , , , & A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiat. Meas. 43, 776–780 (2008)

Download references


We thank colleagues O. F. Huffman, P. Albers, R. Dennell, M. Martinón-Torres, G. Cadée, O. Dutour, K. M. Cohen, P. de Boer, A. van Gijn, C. Hofman, Y. Lammers-Keijsers, A. C. Sorensen, W. Renema, R. Moolenbeek, R. van Zelst, C. A. Johns, A. J. Versendaal, E. Voskuilen, T. G. van Meerten, R. van Elsas, H. Vonhof, S. Kars, W. Koot, P. Bouchet, V. Héros, J. W. Dogger, L. Dekkers, B. Dutailly, G. Devilder and J. Porck. J.C.A.J., W.R. and T.R. acknowledge financial support from the Netherlands Organization for Scientific Research NWO (Open Programme Grant to J.C.A.J., Spinoza Grant 28-548 to W.R. and Rubicon Grant 825.11.03 to T.R.). F.d’E. acknowledges financial support from the European Research Council (FP7/2007/2013, TRACSYMBOLS 249587), and C.A. acknowledges financial support from the STW Technology Foundation (STW.10502).

Author information


  1. Faculty of Archaeology, Leiden University, PO Box 9515, 2300RA, Leiden, The Netherlands

    • Josephine C. A. Joordens
    • , Herman J. Mücher
    • , Victoria van der Haas
    •  & Wil Roebroeks
  2. Faculty of Earth and Life Sciences, VU University Amsterdam, De Boelelaan 1085, 1081HV, Amsterdam, The Netherlands

    • Josephine C. A. Joordens
    • , Jan R. Wijbrans
    • , Klaudia F. Kuiper
    • , Anne S. Schulp
    • , Wim Lustenhouwer
    •  & John J. G. Reijmer
  3. Université de Bordeaux, CNRS UMR 5199, Allée Geoffroy Saint-Hilaire, 33615 Pessac, France

    • Francesco d’Errico
    •  & Hélène Coqueugniot
  4. Institute of Archaeology, History, Cultural Studies and Religion, University of Bergen, Øysteinsgate 3PO Box 7805, Bergen, Norway

    • Francesco d’Errico
  5. Naturalis Biodiversity Center, Darwinweg 2, PO Box 9517, 2300RA, Leiden, The Netherlands

    • Frank P. Wesselingh
    • , John de Vos
    •  & Anne S. Schulp
  6. School of Archaeology and Anthropology, Australian National University, Australian Capital Territory, 0200 Canberra, Australia

    • Stephen Munro
  7. National Museum of Australia, Australian Capital Territory 2601, Canberra, Australia

    • Stephen Munro
  8. Wageningen University, Soil Geography and Landscape Group & Netherlands Centre for Luminescence Dating, PO Box 47, 6700AA, Wageningen, The Netherlands

    • Jakob Wallinga
    • , Christina Ankjærgaard
    •  & Tony Reimann
  9. Delft University of Technology, Faculty of Applied Sciences, Mekelweg 15, 2629JB, Delft, The Netherlands

    • Jakob Wallinga
    • , Christina Ankjærgaard
    •  & Tony Reimann
  10. Prinses Beatrixsingel 21, 6301VK, Valkenburg, The Netherlands

    • Herman J. Mücher
  11. Muséum National d’Histoire Naturelle, UMR 7205, Institut de Systématique, Evolution, Biodiversité, CP51, 55 Rue Buffon, 75005 Paris, France

    • Vincent Prié
  12. Biotope Recherche et Développement, 22 Boulevard Maréchal Foch, 34140 Mèze, France

    • Vincent Prié
  13. Cultural Heritage Agency of the Netherlands, PO Box 1600, 3800BP, Amersfoort, The Netherlands

    • Ineke Joosten
    •  & Bertil van Os
  14. Natuurhistorisch Museum Maastricht, De Bosquetplein 7, 6211KJ, Maastricht, The Netherlands

    • Anne S. Schulp
  15. Faculté de Médecine, Université d′Aix-Marseille, EFS, CNRS UMR 7268, Boulevard Pierre Dramard, 13344 Marseille, France

    • Michel Panuel
  16. Department of Medical Imaging Hôpital Nord, Assistance Publique – Hôpitaux de Marseille, Chemin de Bourrellys, 13915 Marseille, France

    • Michel Panuel


  1. Search for Josephine C. A. Joordens in:

  2. Search for Francesco d’Errico in:

  3. Search for Frank P. Wesselingh in:

  4. Search for Stephen Munro in:

  5. Search for John de Vos in:

  6. Search for Jakob Wallinga in:

  7. Search for Christina Ankjærgaard in:

  8. Search for Tony Reimann in:

  9. Search for Jan R. Wijbrans in:

  10. Search for Klaudia F. Kuiper in:

  11. Search for Herman J. Mücher in:

  12. Search for Hélène Coqueugniot in:

  13. Search for Vincent Prié in:

  14. Search for Ineke Joosten in:

  15. Search for Bertil van Os in:

  16. Search for Anne S. Schulp in:

  17. Search for Michel Panuel in:

  18. Search for Victoria van der Haas in:

  19. Search for Wim Lustenhouwer in:

  20. Search for John J. G. Reijmer in:

  21. Search for Wil Roebroeks in:


J.C.A.J., F.d’E., F.P.W. and W.R. conceived the study. J.C.A.J., F.d’E., F.P.W. and S.M. analysed the shell assemblage. S.M. discovered the engraving. F.d’E. and J.C.A.J. studied the tool and the engraving, assisted by W.L. I.J. did the SEM imaging. J.W., C.A. and T.R. carried out the luminescence dating. J.R.W. and K.F.K. carried out the 40Ar/39Ar dating assisted by V.v.d.H. H.J.M. carried out the micromorphological analysis. V.P. and J.C.A.J. conducted the shell opening experiments. B.v.O., A.S.S. and J.C.A.J. performed the XRF analysis. M.P. did the CT scanning, H.C. carried out the 3D analysis and directed the video. J.C.A.J., F.d’E., F.P.W. and W.R. wrote the paper, with contributions by all other co-authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Josephine C. A. Joordens.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text 1-12, which includes additional results and discussion, Supplementary Tables 3 and 4 (see separate files for Supplementary Tables 1,2, 5, 6), and additional references.

Excel files

  1. 1.

    Supplementary Table 1

    This file contains the Shell database: Shell dimensions of fossil Pseudodon vondembuschianus trinilensis from Trinil HK, recent Pseudodon vondembuschianus from Java, and recent Unio crassus from the Seine River (France). For the Pseudodon it is recorded whether valves are single or paired (articulated) and still connected; and whether the valves are closed or partially open; and whether shells were consolidated in the museum by applying glue. The Pseudodon shell area is divided into seven zones (AC3;Fig. 1b), and presence of breakage, etching, dissolution pits, desquamation, abrasion, holes and grooves is recorded for each zone.

  2. 2.

    Supplementary Table 2

    This file contains the HH-XRF data of fossil hominins and non-hominin fauna from Trinil: The value for yttrium (Y (Ca-corrected)) is obtained by dividing Y counts by Ca counts, multiplied by six (see Supplementary Information section 3).

  3. 3.

    Supplementary Table 5

    This file contains the analytical details of Trinil hornblende, glass shards and feldspars single multi-grain fusion experiments: Location indicates the sample split taken from the three shell infill samples (Trinil-1-3). The reduced and full isotope intensities are given; corrected for baseline, mass discrimination and decay of 37Ar and 39Ar, as well as radiogenic 40Ar contents and K/Ca ratios for individual analyses (see Supplementary Information section 10).

  4. 4.

    Supplementary Table 6

    This file contains the characteristics and dose rates of the investigated samples: a Water content estimate is based on the lithology and information on the burial context of the sample. b Grain size fraction used for luminescence measurements. c The internal concentration of potassium was assumed to be 12.5 ± 0.5 %67. Rubidium concentration was assumed to be 400 ± 100 ppm68. d Based on the U, Th and K concentrations from neutron activiation analysis and converted to dose rate using the conversion factors of Guérin et al.69. e Total dose rates include a cosmic dose rate of 0.11 ± 0.03 Gy/ka; the systematic (syst.) error (shared by the samples) and random (rand.) errors are specified. Reference numbers refer to references listed in the SI pdf (see Supplementary Information section 11).


  1. 1.

    Animation of shell opening made on the basis of a CT scan of a living Unio mancus turtonii.

    It shows how a sharp object perforates the shell at the location of the anterior adductor muscle and hits the muscle (indicated in red). This causes loss of muscle control, and the shell then can be opened.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.