Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Learning to coexist with wildfire

Abstract

The impacts of escalating wildfire in many regions — the lives and homes lost, the expense of suppression and the damage to ecosystem services — necessitate a more sustainable coexistence with wildfire. Climate change and continued development on fire-prone landscapes will only compound current problems. Emerging strategies for managing ecosystems and mitigating risks to human communities provide some hope, although greater recognition of their inherent variation and links is crucial. Without a more integrated framework, fire will never operate as a natural ecosystem process, and the impact on society will continue to grow. A more coordinated approach to risk management and land-use planning in these coupled systems is needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Links and pathways to resilience in coupled socioecological systems affected by fire.
Figure 2: Area burned patterns and locations of fire-prone regions.
Figure 3: Relationship between forest cover, population density and area burned in fire-prone regions.

Similar content being viewed by others

References

  1. McCaffrey, S. Thinking of wildfire as a natural hazard. Soc. Nat. Resour. 17, 509–516 (2004). This article identifies the importance of viewing fire in the context of natural hazards, which emphasizes human–hazard interactions in ways that most fire research does not.

    Article  Google Scholar 

  2. Holling, C. S. & Meffe, G. K. Command and control and the pathology of natural resource management. Conserv. Biol. 10, 328–337 (1996).

    Article  Google Scholar 

  3. Driscoll, D. A. et al. Fire management for biodiversity conservation: key research questions and our capacity to answer them. Biol. Conserv. 143, 1928–1939 (2010). This article examines knowledge gaps and defines a research agenda to better understand species-specific responses to fire regimes, spatio-temporal effects on biota and interactions of fire regimes with other processes.

    Article  Google Scholar 

  4. Naveh, Z. in The Role of Fire in Mediterranean-type Ecosystems (eds Moreno, J. & Oechel, W.) 163–185 (Springer, 1994).

    Book  Google Scholar 

  5. Noss, R. F., Franklin, J. F., Baker, W. L., Schoennagel, T. & Moyle, P. B. Managing fire-prone forests in the western United States. Front. Ecol. Environ. 4, 481–487 (2006). This article discusses the science underpinning the development and implementation of fire and fuel management policies for forests before, during and after wildfires.

    Article  Google Scholar 

  6. van Wilgen, B. W., Cowling, R. M. & Burgers, C. J. Valuation of ecosystem services. Bioscience 46, 184–189 (1996).

    Article  Google Scholar 

  7. Gill, A. M., Stephens, S. L. & Cary, G. J. The worldwide “wildfire” problem. Ecol. Appl. 23, 438–454 (2013). This article provides an overview of fire effects on various environmental, social and economic assets, highlighting the complex and geographically specific context of the problem.

    Article  PubMed  Google Scholar 

  8. Fernandes, P. M. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landsc. Urban Plan. 110, 175–182 (2013).

    Article  Google Scholar 

  9. Forests and Rangelands. The National Strategy: The Final Phase in the Development of the National Cohesive Wildland Fire Management Strategy http://www.forestsandrangelands.gov/strategy (US Forests and Rangelands, 2014).

  10. FAO. Fire Management: Voluntary Guidelines. Principles and Strategic Actions http://www.fao.org/forestry/site/35853/en (FAO, 2006).

  11. Forest Fire Management Group. National Bushfire Management — Policy Statement for Forests and Rangelands (Forest Fire Management Group for the Council of Australian Governments, 2012).

  12. Myers, R. L. Living with Fire-Sustaning Ecosystems and Livehoods Through Integrated Fire Management (The Nature Conservancy Global Fire Initiative, 2006).

    Google Scholar 

  13. Moritz, M. A. et al. Climate change and disruptions to global fire activity. Ecosphere 3, 49 (2012). This article provides projections of future fire activity under climate change scenarios and examines sources of uncertainty in such predictions.

    Article  Google Scholar 

  14. Berkes, F. & Folke, C. in Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience (eds Berkes, F. & Folke, C.) 13–20 (Cambridge Univ. Press, 1998).

    Google Scholar 

  15. Chapin, F. S. et al. Policy strategies to address sustainability of Alaskan boreal forests in response to a directionally changing climate. Proc. Natl Acad. Sci. USA 103, 16637–16643 (2006).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  16. Chapin, F. S. et al. Increasing wildfire in Alaska's boreal forest: pathways to potential solutions of a wicked problem. Bioscience 58, 531–540 (2008).

    Article  Google Scholar 

  17. Jakes, P. J. & Langer, E. R. L. The adaptive capacity of New Zealand communities to wildfire. Int. J. Wildland Fire 21, 764–772 (2012).

    Article  Google Scholar 

  18. Paveglio, T. B., Jakes, P. J., Carroll, M. S. & Williams, D. R. Understanding social complexity within the wildland–urban interface: a new species of human habitation? Environ. Mgmt 43, 1085–1095 (2009).

    Article  Google Scholar 

  19. Gill, A. M. Landscape fires as social disasters: an overview of 'the bushfire problem'. Environ. Hazards 6, 65–80 (2005).

    Article  Google Scholar 

  20. Bradstock, R. A., Gill, A. M. & Williams, R. J. in Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World (eds Bradstock, R. A., Gill, A. M. & Williams, R. J.) 307–324 (CSIRO Publishing, 2012).

    Book  Google Scholar 

  21. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    Article  CAS  ADS  PubMed  Google Scholar 

  22. Mazzoleni, S., di Pasquale, G., Mulligan, M., di Martino, P. & Rego, F. Recent Dynamics of the Mediterranean Vegetation and Landscape (Wiley, 2004).

    Book  Google Scholar 

  23. Trabaud, L. V., Christensen, N. L. & Gill, A. M. in Fire in the Environment: the Ecological, Atmospheric, and Climatic Importance of Vegetation Fires (eds Crutzen, P. J. & Goldammer, J. G.) 277–295 (Wiley, 1993).

    Google Scholar 

  24. Moreira, F. et al. Landscape-wildfire interactions in southern Europe: implications for landscape management. J. Environ. Manage. 92, 2389–2402 (2011).

    Article  PubMed  Google Scholar 

  25. Pausas, J. G. & Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Clim. Change 110, 215–226 (2012).

    Article  ADS  Google Scholar 

  26. San-Miguel-Ayanz, J., Moreno, J. M. & Camia, A. Analysis of large fires in European Mediterranean landscapes: lessons learned and perspectives. For. Ecol. Manage. 294, 11–22 (2013).

    Article  Google Scholar 

  27. Silva, J. S., Rego, F., Fernandes, P. & Rigolot, E. Towards Integrated Fire Management: Outcomes of the European Project Fire Paradox (European Forest Institute, 2010).

    Google Scholar 

  28. Castellnou, M., Kraus, D. & Miralles, M. in Best Practices of Fire Use: Prescribed Burning and Suppression: Fire Programmes in Selected Case-study Regions in Europe (eds Montiel, C. & Kraus, D. T.) 3–16 (European Forest Institute, 2010).

    Google Scholar 

  29. Koutsias, N. et al. Where did the fires burn in Peloponnisos, Greece the summer of 2007? Evidence for a synergy of fuel and weather. Agric. For. Meteorol. 156, 41–53 (2012).

    Article  ADS  Google Scholar 

  30. Swetnam, T. W., Allen, C. D. & Bentacourt, J. L. Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206 (1999).

    Article  Google Scholar 

  31. Grissino-Mayer, H. D. & Fritts, H. C. The International Tree-Ring Data Bank: an enhanced global database serving the global scientific community. Holocene 7, 235–238 (1997).

    Article  ADS  Google Scholar 

  32. Hessburg, P. F., Salter, R. B. & James, K. M. Re-examining fire severity relations in pre-management era mixed conifer forests: inferences from landscape patterns of forest structure. Landscape Ecol. 22, 5–24 (2007).

    Article  Google Scholar 

  33. Allen, C. D. et al. Ecological restoration of southwest ponderosa pine ecosystems: a broad perspective. Ecol. Appl. 12, 1418–1433 (2002).

    Article  Google Scholar 

  34. Keeley, J. E. et al. Ecological Foundations for Fire Management in North American Forest and Shrubland Ecosystems (US Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2009).

    Book  Google Scholar 

  35. Perry, D. A. et al. The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. For. Ecol. Manage. 262, 703–717 (2011).

    Article  Google Scholar 

  36. Schoennagel, T. & Nelson, C. R. Restoration relevance of recent National Fire Plan treatments in forests of the western United States. Front. Ecol. Environ. 9, 271–277 (2011).

    Article  Google Scholar 

  37. Turner, M. G. & Romme, W. H. Landscape dynamics in crown fire ecosystems. Landscape Ecol. 9, 59–77 (1994).

    Article  Google Scholar 

  38. Dillon, G.K. et al. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere 2, 130 (2011).

    Article  Google Scholar 

  39. Schoennagel, T., Veblen, T. T. & Romme, W. H. The interaction of fire, fuels, and climate across rocky mountain forests. Bioscience 54, 661–676 (2004).

    Article  Google Scholar 

  40. Agee, J. K. & Skinner, C. N. Basic principles of forest fuel reduction treatments. For. Ecol. Manage. 211, 83–96 (2005).

    Article  Google Scholar 

  41. Stephens, S. L. et al. The effects of forest fuel-reduction treatments in the United States. Bioscience 62, 549–560 (2012).

    Article  Google Scholar 

  42. Odion, D. C. et al. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed-conifer forests of western North America. PLoS ONE 9, e87852 (2014).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Fuhlendorf, S. D., Woodward, A. J., Leslie, D. M. & Shackford, J. S. Multi-scale effects of habitat loss and fragmentation on lesser prairie-chicken populations of the US Southern Great Plains. Landscape Ecol. 17, 617–628 (2002).

    Article  Google Scholar 

  44. Van Auken, O. W. Causes and consequences of woody plant encroachment into western North American grasslands. J. Environ. Manage. 90, 2931–2942 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Moritz, M. A., Moody, T. J., Krawchuk, M. A., Hughes, M. & Hall, A. Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems. Geophys. Res. Lett. http://dx.doi.org/10.1029/2009GL041735 (2010).

  46. Moritz, M. A., Keeley, J. E., Johnson, E. A. & Schaffner, A. A. Testing a basic assumption of shrubland fire management: how important is fuel age? Front. Ecol. Environ. 2, 67–72 (2004).

    Article  Google Scholar 

  47. Syphard, A. D., Keeley, J. E. & Brennan, T. J. Comparing the role of fuel breaks across southern California national forests. For. Ecol. Manage. 261, 2038–2048 (2011).

    Article  Google Scholar 

  48. Zedler, P. H., Gautier, C. R. & McMaster, G. S. Vegetation change in response to extreme events: the effect of a short interval between fires in California chaparral and coastal scrub. Ecology 64, 809–818 (1983).

    Article  Google Scholar 

  49. Balch, J. K., Bradley, B. A., D'Antonio, C. M. & Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Change Biol. 19, 173–183 (2013).

    Article  ADS  Google Scholar 

  50. D'Antonio, C. M. & Vitousek, P. M. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst. 23, 63–87 (1992).

    Article  Google Scholar 

  51. Brooks, M. L. et al. Effects of invasive alien plants on fire regimes. Bioscience 54, 677–688 (2004).

    Article  Google Scholar 

  52. Murphy, B. P. et al. Fire regimes of Australia: a pyrogeographic model system. J. Biogeogr. 40, 1048–1058 (2013).

    Article  Google Scholar 

  53. Russell-Smith, J. et al. Bushfires 'down under': patterns and implications of contemporary Australian landscape burning. Int. J. Wildland Fire 16, 361–377 (2007).

    Article  Google Scholar 

  54. Bradstock, R. A. A biogeographic model of fire regimes in Australia: current and future implications. Glob. Ecol. Biogeogr. 19, 145–158 (2010).

    Article  Google Scholar 

  55. Mooney, S. D., Harrison, S. P., Bartlein, P. & Stevenson, J. in Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World (eds Bradstock, R. A., Gill, A. M. & Williams, R. J.) 293–305 (CSIRO, 2012).

    Google Scholar 

  56. Cook, G. D., Jackson, S. & Williams, R. J. in Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World (eds Bradstock, R. A., Gill, A. M. & Williams, R. J.) 293–305 (CSIRO, 2012).

    Google Scholar 

  57. Attiwill, P. M. et al. Timber harvesting does not increase fire risk and severity in wet eucalypt forests of southern Australia. Conserv. Lett. 7, 341–354 (2013).

    Article  Google Scholar 

  58. Price, O. F. & Bradstock, R. A. The efficacy of fuel treatment in mitigating property loss during wildfires: insights from analysis of the severity of the catastrophic fires in 2009 in Victoria, Australia. J. Environ. Manage. 113, 146–157 (2012).

    Article  PubMed  Google Scholar 

  59. Penman, T. D. et al. Prescribed burning: how can it work to conserve the things we value? Int. J. Wildland Fire 20, 721–733 (2011).

    Article  Google Scholar 

  60. Nimmo, D. G., Kelly, L. T., Farnsworth, L. M., Watson, S. J. & Bennett, A. F. Why do some species have geographically varying responses to fire history? Ecography 37, 805–813 (2014).

    Article  Google Scholar 

  61. Pausas, J. G. & Bradstock, R. A. Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Glob. Ecol. Biogeogr. 16, 330–340 (2007).

    Article  Google Scholar 

  62. Krawchuk, M. A. & Moritz, M. A. Constraints on global fire activity vary across a resource gradient. Ecology 92, 121–132 (2011).

    Article  PubMed  Google Scholar 

  63. Dunlop, M. et al. The Implications of Climate Change for Biodiversity Conservation and the National Reserve System: Final Synthesis (CSIRO Climate Adaptation Flagship, 2012).

    Google Scholar 

  64. Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).

    Article  PubMed  Google Scholar 

  65. Moritz, M. A., Hurteau, M. D., Suding, K. N. & D'Antonio, C. M. Bounded ranges of variation as a framework for future conservation and fire management. Ann. NY Acad. Sci. 1286, 92–107 (2013).

    Article  ADS  PubMed  Google Scholar 

  66. Hannah, L. et al. Fine-grain modeling of species' response to climate change: holdouts, stepping-stones, and microrefugia. Trends Ecol. Evol. 290, 390–397 (2014).

    Article  Google Scholar 

  67. Moritz, M. A., Hessburg, P. F. & Povak, N. A. in The Landscape Ecology of Fire (eds McKenzie, D., Miller, C., & Falk, D.) 51–86 (Springer, 2011).

    Book  Google Scholar 

  68. Parr, C. L. & Andersen, A. N. Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv. Biol. 20, 1610–1619 (2006).

    Article  PubMed  Google Scholar 

  69. Mcdonald, R. I. et al. Urban effects, distance, and protected areas in an urbanizing world. Landsc. Urban Plan. 93, 63–75 (2009).

    Article  Google Scholar 

  70. Theobald, D. M. & Romme, W. H. Expansion of the US wildland-urban interface. Landsc. Urban Plan. 83, 340–354 (2007).

    Article  Google Scholar 

  71. Schoennagel, T., Nelson, C. R., Theobald, D. M., Carnwath, G. C. & Chapman, T. B. Implementation of National Fire Plan treatments near the wildland–urban interface in the western United States. Proc. Natl Acad. Sci. USA 106, 10706–10711 (2009).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  72. Gude, P., Rasker, R. & van den Noort, J. Potential for future development on fire-prone lands. J. For. 106, 198–205 (2008).

    Google Scholar 

  73. Galiana-Martin, L., Herrero, G. & Solana, J. A wildland–urban interface typology for forest fire risk management in Mediterranean areas. Landscape Res. 36, 151–171 (2011).

    Article  Google Scholar 

  74. Lampin-Maillet, C. et al. Mapping wildland-urban interfaces at large scales integrating housing density and vegetation aggregation for fire prevention in the South of France. J. Environ. Manage. 91, 732–741 (2010).

    Article  PubMed  Google Scholar 

  75. Lowell, K. et al. Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat. Int. J. Wildland Fire 18, 1010–1020 (2009).

    Article  Google Scholar 

  76. Bar-Massada, A., Radeloff, V. C. & Stewart, S. I. Biotic and abiotic effects of human settlements in the wildland–urban interface. Bioscience 64, 429–437 (2014).

    Article  Google Scholar 

  77. Calkin, D. E., Cohen, J. D., Finney, M. A. & Thompson, M. P. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl Acad. Sci. USA 111, 746–751 (2014).

    Article  CAS  ADS  PubMed  Google Scholar 

  78. McCaffrey, S., Toman, E., Stidham, M. & Shindler, B. Social science research related to wildfire management: an overview of recent findings and future research needs. Int. J. Wildland Fire 22, 15–24 (2013).

    Article  CAS  Google Scholar 

  79. Handmer, J. & Tibbits, A. Is staying at home the safest option during bushfires? Historical evidence for an Australian approach. Glob. Environ. Change B 6, 81–91 (2005). This article discusses the historical basis for Australia's 'prepare, stay and defend, or leave early' policy approach to wildfire.

    Google Scholar 

  80. Toman, E., Stidham, M., McCaffrey, S. & Shindler, B. Social Science at the Wildland-Urban Interface: a Compendium of Research Results to Create Fire-Adapted Communities (US Department of Agriculture, 2013).

    Book  Google Scholar 

  81. Whittaker, J. & Handmer, J. Community bushfire safety: a review of post-black Saturday research. Aus. J. Emerg. Mgmt 25, 7–13 (2010).

    Google Scholar 

  82. Olsen, C. S. & Sharp, E. Building community–agency trust in fire-affected communities in Australia and the United States. Int. J. Wildland Fire 22, 822–831 (2013).

    Article  Google Scholar 

  83. McCaffrey, S. M. & Olsen, C. S. Research Perspectives on the Public and Fire Management: a Synthesis of Current Social Science on Eight Essential Questions (US Department of Agriculture, 2012).

  84. Whittaker, J., Haynes, K., Handmer, J. & McLennan, J. Community safety during the 2009 Australian Black Saturday bushfires: an analysis of household preparedness and response. Int. J. Wildland Fire 22, 841–849 (2013).

    Article  Google Scholar 

  85. Viegas, D. X., Ribeiro, L., Viegas, M., Pita, L. & Rossa, C. in Earth Observation of Wildland Fires in Mediterranean Ecosystems (ed. Chuvieco, E.) 97–109 (Springer, 2009).

    Book  Google Scholar 

  86. Cova, T. J., Theobald, D. M., Norman, J. B. & Siebeneck, L. K. Mapping wildfire evacuation vulnerability in the western US: the limits of infrastructure. GeoJournal 78, 273–285 (2013).

    Article  Google Scholar 

  87. Penman, T. D. et al. Defining adequate means of residents to prepare property for protection from wildfire. Int. J. Disaster Risk Reduction 6, 67–77 (2013). This article discusses the different aspects of what people need to understand to live safely in a fire-prone environment, including the possibility of having to stay and defend a home during a wildfire situation.

    Article  Google Scholar 

  88. Blanchi, R. & Leonard, J. in Community Bushfire Safety (eds Handmer, J. & Haynes, K.) 77–85 (CSIRO Publishing, 2008).

    Google Scholar 

  89. Cohen, J. Preventing disaster — home ignitability in the wildland-urban interface. J. For. 98, 15–21 (2000).

    Google Scholar 

  90. Manzello, S. L., Park, S.-H. & Cleary, T. G. Investigation on the ability of glowing firebrands deposited within crevices to ignite common building materials. Fire Saf. J. 44, 894–900 (2009).

    Article  CAS  Google Scholar 

  91. Leonard, J. et al. Building and Land-use Planning Research After the 7th February Victorian Bushfires: Preliminary Findings (CSIRO and Bushfire CRC, 2009).

    Google Scholar 

  92. Foote, E. I. D., Martin, R. E. & Gilless, J. K. in Proc. 11th Conf. Fire Forest Meteorology (eds Andrews, P.L. & Potts, D.F.) 16–19 (Society of American Foresters, 1991).

    Google Scholar 

  93. Gibbons, P. et al. Land management practices associated with house loss in wildfires. PLoS ONE 7, e29212 (2012). This article presents an analyses of factors leading to residential home losses in the 2009 Black Saturday fires in Australia.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  94. Syphard, A. D., Brennan, T. J. & Keeley, J. E. The role of defensible space for residential structure protection during wildfires. Inter. J. Wildland Fire http://dx.doi.org/10.1071/wf13158 (2014).

  95. Franklin, S. E. California's catastrophic intermix fires causes, culprits and cures. Am. Fire J. 40, 20–23 (1996).

    Google Scholar 

  96. Cohen, J. D. Relating flame radiation to home ignition using modeling and experimental crown fires. Can. J. For. Res. 34, 1616–1626 (2004).

    Article  Google Scholar 

  97. Stockmann, K., Burchfield, J., Calkin, D. & Venn, T. Guiding preventative wildland fire mitigation policy and decisions with an economic modeling system. For. Policy Econ. 12, 147–154 (2010).

    Article  Google Scholar 

  98. Syphard, A. D., Keeley, J. E., Massada, A. B., Brennan, T. J. & Radeloff, V. C. Housing arrangement and location determine the likelihood of housing loss due to wildfire. PLoS ONE 7, e33954–e33954 (2012). This article presents an analysis of factors leading to residential home losses in fire-prone southern California.

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  99. Bovio, G. & Camia, A. Land zoning based on fire history. Int. J. Wildland Fire 7, 249–258 (1997).

    Article  Google Scholar 

  100. Buxton, M., Haynes, R., Mercer, D. & Butt, A. Vulnerability to bushfire risk at Melbourne's urban fringe: the failure of regulatory land use planning. Geogr. Res. 49, 1–12 (2011).

    Article  Google Scholar 

  101. Burby, R. J. Hurricane Katrina and the paradoxes of government disaster policy: bringing about wise governmental decisions for hazardous areas. Ann. Am. Acad. Pol. Soc. Sci. 604, 171–191 (2006).

    Article  Google Scholar 

  102. Cruz, M. G. & Alexander, M. E. Assessing crown fire potential in coniferous forests of western North America: a critique of current approaches and recent simulation studies. Int. J. Wildland Fire 19, 377–398 (2010).

    Article  Google Scholar 

  103. Rhodes, J. J. & Baker, W. L. Fire probability, fuel treatment effectiveness and ecological tradeoffs in western U.S. public forests. Open Forest Sci. J. 1, 1–7 (2008).

    Google Scholar 

Download references

Acknowledgements

We would like to thank V. Butsic, S. Cole Moritz, C. English and K. McLeod for comments on drafts of the manuscript, as well as P. Morgan for suggestions that greatly improved the final version. Some of this work was conducted while M.A.M. was a Center Fellow at the National Center for Ecological Analysis and Synthesis, a Center funded by NSF (Grant #EF-0553768), the University of California, Santa Barbara, and the State of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max A. Moritz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moritz, M., Batllori, E., Bradstock, R. et al. Learning to coexist with wildfire. Nature 515, 58–66 (2014). https://doi.org/10.1038/nature13946

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13946

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene