Subjects

Abstract

Previously known only from isolated teeth and lower jaw fragments recovered from the Cretaceous and Palaeogene of the Southern Hemisphere, the Gondwanatheria constitute the most poorly known of all major mammaliaform radiations. Here we report the discovery of the first skull material of a gondwanatherian, a complete and well-preserved cranium from Upper Cretaceous strata in Madagascar that we assign to a new genus and species. Phylogenetic analysis strongly supports its placement within Gondwanatheria, which are recognized as monophyletic and closely related to multituberculates, an evolutionarily successful clade of Mesozoic mammals known almost exclusively from the Northern Hemisphere. The new taxon is the largest known mammaliaform from the Mesozoic of Gondwana. Its craniofacial anatomy reveals that it was herbivorous, large-eyed and agile, with well-developed high-frequency hearing and a keen sense of smell. The cranium exhibits a mosaic of primitive and derived features, the disparity of which is extreme and probably reflective of a long evolutionary history in geographic isolation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. A new, richly fossiliferous member comprised of tidal deposits in the Upper Cretaceous Maevarano Formation, northwestern Madagascar. Cretac. Res. 44, 12–29 (2013)

  2. 2.

    , & Mammals From the Age of Dinosaurs: Origins, Evolution, and Structure (Columbia Univ. Press, 2004)

  3. 3.

    et al. Persistence of a Mesozoic, non-therian mammalian lineage (Gondwanatheria) in the mid-Paleogene of Patagonia. Naturwissenschaften 99, 449–463 (2012)

  4. 4.

    , & Hypsodonty and enamel microstructure in the Paleocene gondwanatherian mammal Sudamerica ameghinoi. Acta Palaeontol. Pol. 44, 263–300 (1999)

  5. 5.

    Additional specimens of sudamericid (Gondwanatheria) mammals from the early Paleocene of Argentina. Palaeontology 51, 1069–1089 (2008)

  6. 6.

    & The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria. J. Mamm. Evol. 16, 25–49 (2009)

  7. 7.

    Vincelestes neuquenianus Bonaparte (Mammalia, Theria) un Primitivo Mamífero del Cretácico Inferior de la Cuenca Neuquina. PhD thesis, Univ. Buenos Aires. (1993)

  8. 8.

    , & Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479, 98–102 (2011)

  9. 9.

    , , , & Cosmopolitanism among Late Cretaceous Gondwanan mammals. Nature 390, 504–507 (1997)

  10. 10.

    Gondwanatheria and ?Multituberculata (Mammalia) from the Late Cretaceous of Madagascar. Can. J. Earth Sci. 50, 324–340 (2013)

  11. 11.

    & Distinctive mammal-like reptile from Mexico and its bearing on the phylogeny of the Tritylodontidae. Nature 315, 398–400 (1985)

  12. 12.

    , & Paleontological and developmental evidence resolve the homology and dual embryonic origin of a mammalian skull bone, the interparietal. Proc. Natl Acad. Sci. USA 109, 14075–14080 (2012)

  13. 13.

    , & Re-investigation of the basicranium of Haldanodon exspectatus (Docodonta, Mammaliaformes). J. Vertebr. Paleontol. 33, 382–400 (2013)

  14. 14.

    , , & Large Mesozoic mammals fed on young dinosaurs. Nature 433, 149–152 (2005)

  15. 15.

    Review of the early allotherian mammals. Acta Palaeontol. Pol. 45, 317–342 (2000)

  16. 16.

    Jaw movement, dental function, and diet in the Paleocene multituberculate Ptilodus. Paleobiology 8, 265–281 (1982)

  17. 17.

    & Masticatory musculature of Asian taeniolabidoid multituberculate mammals. Acta Palaeontol. Pol. 40, 45–108 (1995)

  18. 18.

    , & Ferugliotherium Bonaparte, the first known multituberculate from South America. J. Vertebr. Paleontol. 12, 351–376 (1992)

  19. 19.

    & Superfamily Gondwanatherioidea: a previously unrecognized radiation of multituberculate mammals in South America. Proc. Natl Acad. Sci. USA 90, 9379–9383 (1993)

  20. 20.

    The size of the orbit and of the eye in primates. Am. J. Phys. Anthropol. 26, 389–408 (1940)

  21. 21.

    & Osteological evidence for the evolution of activity pattern and visual acuity in primates. Am. J. Phys. Anthropol. 113, 235–262 (2000)

  22. 22.

    Effects of activity pattern on eye size and orbital aperture size in primates. J. Hum. Evol. 51, 159–170 (2006)

  23. 23.

    The Allometry of the Vertebrate Eye PhD thesis, Univ. Chicago (1982)

  24. 24.

    & Evolution of eye size and shape in primates. J. Hum. Evol. 52, 294–313 (2007)

  25. 25.

    & Eye size and visual acuity influence vestibular anatomy in mammals. Anat. Rec. 297, 781–790 (2014)

  26. 26.

    Origin of mammals based upon the cranial morphology of therapsid suborders. Spec. Pap. Geol. Soc. Am. 55, 1–130 (1944)

  27. 27.

    The inner ear of two Late Cretaceous multituberculate mammals, and its implications for multituberculate hearing. J. Mamm. Evol. 5, 65–93 (1998)

  28. 28.

    Comparative anatomy of the bony labyrinth (inner ear) of placental mammals. PLoS ONE 8, e66624 (2013)

  29. 29.

    & Relationship of semicircular canal size to vestibular-nerve afferent sensitivity in mammals. J. Neurophysiol. 98, 3197–3205 (2007)

  30. 30.

    , & Functional implications of ubiquitous semicircular canal non-orthogonality in mammals. PLoS ONE 8, e79585 (2013)

  31. 31.

    , & The petrosal and inner ear of the Late Jurassic cladotherian mammal Dryolestes leiriensis and implications for ear evolution in therian mammals. Zool. J. Linn. Soc. 166, 433–463 (2012)

  32. 32.

    , & The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999)

  33. 33.

    Olfactory receptor multigene family in vertebrates: from the viewpoint of evolutionary genomics. Curr. Genomics 13, 103–114 (2012)

  34. 34.

    & Un peculiar Paratheria, Edentata (Mammalia) del Paleoceno de Patagonia. Primeras J. Argent. Paleontol. Vertebr., abstr. 15. (1984)

  35. 35.

    & Un peculiar Xenarthra del Paleoceno medio de Patagonia (Argentina). Su importancia en la sistemática de los Paratheria. Ameghiniana 21, 173–176 (1985)

  36. 36.

    Bio-evolutionary Aspects of Mesozoic Mammals: Description, Phylogenetic Relationships and Evolution of the Gondwanatheria (Late Cretaceous and Paleocene of Gondwana) PhD thesis, Univ. Buenos Aires (2006)

  37. 37.

    & The Gondwanan and South American episodes: two major and unrelated moments in the history of the South American mammals. J. Mamm. Evol. 14, 75–137 (2007)

  38. 38.

    , , , & The first gnathic remains of Sudamerica: implications for gondwanathere relationships. J. Vertebr. Paleontol. 19, 373–382 (1999)

  39. 39.

    et al. An Australian multituberculate and its palaeobiogeographic implications. Acta Palaeontol. Pol. 54, 1–6 (2009)

  40. 40.

    & Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 38, 1855–1872 (2011)

  41. 41.

    et al. Spatial and temporal arrival patterns of Madagascar’s vertebrate fauna explained by distance, ocean currents, and ancestor type. Proc. Natl Acad. Sci. USA 109, 5352–5357 (2012)

  42. 42.

    et al. Imperfect isolation: factors and filters shaping Madagascar’s extant vertebrate fauna. PLoS ONE 8, e62086 (2013)

  43. 43.

    , & A giant frog with South American affinities from the Late Cretaceous of Madagascar. Proc. Natl Acad. Sci. USA 105, 2951–2956 (2008)

  44. 44.

    , , & A pug-nosed crocodyliform from the Late Cretaceous of Madagascar. Nature 405, 941–944 (2000)

  45. 45.

    , , & The theropod ancestry of birds: new evidence from the Late Cretaceous of Madagascar. Science 279, 1915–1919 (1998)

  46. 46.

    et al. Predatory dinosaur remains from Madagascar: implications for the Cretaceous biogeography of Gondwana. Science 280, 1048–1051 (1998)

  47. 47.

    , & A bizarre predatory dinosaur from the Late Cretaceous of Madagascar. Nature 409, 504–506 (2001)

  48. 48.

    et al. Vertebrate time-tree elucidates the biogeographic pattern of major biotic change around the K-T boundary in Madagascar. Proc. Natl Acad. Sci. USA 109, 5358–5363 (2012)

  49. 49.

    et al. Blindsnake evolutionary tree reveals long history on Gondwana. Biol. Lett. 6, 558–561 (2010)

  50. 50.

    & Gondwana to Asia: plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma). Earth Sci. Rev. 88, 145–166 (2008)

Download references

Acknowledgements

We thank the Université d’Antananarivo, the Madagascar Institut pour la Conservation des Ecosystèmes Tropicaux, and the villagers of the Lac Kinkony Study Area for logistical support of fieldwork; various ministries of the Republic of Madagascar for permission to conduct field research; members of the 2010 field research team for their efforts; J. Thostenson and M. Hill of the American Museum of Natural History Microscopy & Imaging Facility, New York, New York, and J. Diehm and B. Ruether of Avonix Imaging, Plymouth, Minnesota, and various members of the Department of Radiology at Stony Brook University for providing expert assistance in computed tomography scanning; L. Betti-Nash for artwork; J. Neville for photography; D. Pulaski for reconstructing the cranium and building the finite element models; Z.-X. Luo, G. Rougier and A. Weil for their reviews of the paper; and the National Geographic Society (8597-09) and the National Science Foundation (EAR-0446488, EAR-1123642) for funding.

Author information

Affiliations

  1. Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York 11794, USA

    • David W. Krause
    • , Simone Hoffmann
    • , Joseph R. Groenke
    •  & Erik R. Seiffert
  2. Section of Mammals, Carnegie Museum of Natural History, 5800 Baum Boulevard, Pittsburgh, Pennsylvania 15206, USA

    • John R. Wible
  3. Department of Anthropology, University of Texas at Austin, Austin, Texas 78712, USA

    • E. Christopher Kirk
    •  & Addison D. Kemp
  4. Steinmann-Institut für Geologie, Mineralogie und Paläontologie der Universität Bonn, D-53115 Bonn, Germany

    • Julia A. Schultz
    •  & Wighart von Koenigswald
  5. Department of Anthropology, Stony Brook University, Stony Brook, New York 11794, USA

    • James B. Rossie
  6. Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, USA

    • Patrick M. O’Connor
    •  & Waymon L. Holloway
  7. Ohio Center for Ecology and Evolutionary Studies, Ohio University, Athens, Ohio 45701 USA

    • Patrick M. O’Connor
    •  & Waymon L. Holloway
  8. Department of Biology, 221 Morrill Science Center, University of Massachusetts, Amherst, Massachusetts 01003, USA

    • Elizabeth R. Dumont
  9. Geology Department, Macalester College, 1600 Grand Avenue, St Paul, Minnesota 55105, USA

    • Raymond R. Rogers
  10. Département de Géologie, Université d’Antananarivo, Antananarivo (101), Madagascar

    • Lydia J. Rahantarisoa
  11. Département de Paléontologie, Université d’Antananarivo, Antananarivo (101), Madagascar

    • Haingoson Andriamialison

Authors

  1. Search for David W. Krause in:

  2. Search for Simone Hoffmann in:

  3. Search for John R. Wible in:

  4. Search for E. Christopher Kirk in:

  5. Search for Julia A. Schultz in:

  6. Search for Wighart von Koenigswald in:

  7. Search for Joseph R. Groenke in:

  8. Search for James B. Rossie in:

  9. Search for Patrick M. O’Connor in:

  10. Search for Erik R. Seiffert in:

  11. Search for Elizabeth R. Dumont in:

  12. Search for Waymon L. Holloway in:

  13. Search for Raymond R. Rogers in:

  14. Search for Lydia J. Rahantarisoa in:

  15. Search for Addison D. Kemp in:

  16. Search for Haingoson Andriamialison in:

Contributions

J.R.G. prepared the fossil; J.R.G., S.H., W.L.H. and P.M.O. conducted most of the micro-computed tomography digital preparation; L.J.R. and R.R.R. provided geological data; H.A. provided logistical support; J.R.G., S.H., D.W.K., W.v.K., P.M.O., J.B.R. and J.R.W. provided most of the descriptions and comparisons; E.R.D., A.D.K., D.W.K., E.C.K., W.v.K., P.M.O., J.A.S. and J.R.W. conducted various functional and comparative analyses; S.H., D.W.K., E.R.S. and J.R.W. contributed to the phylogenetic analysis; D.W.K. developed the manuscript, with contributions from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to David W. Krause.

Vintana sertichi has been assigned the Life Science Identifier (LSID) http://zoobank.org/urn:lsid:zoobank.org:act:B21CC5B2-D550-4D78-BA1F-8319EA663785.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Text and Data – see contents page for details.

Videos

  1. 1.

    Virtual reconstruction of cranium of Vintana sertichi (UA 9972) from μCT dataset, with full rotation (360°) about a dorsoventral axis.

    Visualization maps dataset density contrast with false colors resembling those on actual specimen, with the exception of tooth enamel.

  2. 2.

    Virtual reconstruction of cranium of Vintana sertichi (UA 9972) from µCT dataset, with full rotation (360°) about an anteroposterior axis.

    Visualization maps dataset density contrast with false colors resembling those on actual specimen, with the exception of tooth enamel.

  3. 3.

    Virtual reconstruction of elements of right side of cranium of Vintana sertichi (UA 9972).

    Animation of translation of cranial elements from articulated position to Beauchene-style ("exploded") presentation. Cranial elements presented as polygon surfaces created from segmentation of μCT dataset.

  4. 4.

    Virtual reconstruction of left molariform toothrow (MF2–MF4) of Vintana sertichi (UA 9972) from µCT dataset, with two full rotations (each 360°) about an anteroposterior axis.

    First rotation highlights surface morphology. Second rotation highlights internal morphology, with pulp cavities in green and infundibula in blue.

  5. 5.

    Virtual reconstruction of left molariform toothrow (MF2–MF4) of Vintana sertichi (UA 9972) from µCT dataset, with two full rotations (each 360°) about a dorsoventral axis.

    First rotation highlights surface morphology. Second rotation highlights internal morphology, with pulp cavities in green and infundibula in blue.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13922

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.