Abstract

High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept1,2,3 being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma4,5,6. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma7. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a compact and affordable accelerator technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , & Acceleration of electrons by the interaction of a bunched electron beam with a plasma. Phys. Rev. Lett. 54, 693–696 (1985)

  2. 2.

    , , & A plasma wake field accelerator. Particle Accelerators 17, 171–189 (1985)

  3. 3.

    , & Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 81, 1229–1285 (2009)

  4. 4.

    & Plasma accelerators at the energy frontier and on tabletops. Phys. Today 56, 47–53 (2003)

  5. 5.

    , & Plasma based charged-particle accelerators. Plasma Phys. Contr. Fusion 46, R1 (2004)

  6. 6.

    , , & Proton-driven plasma-wakefield acceleration. Nature Phys. 5, 363–367 (2009)

  7. 7.

    et al. Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator. Nature 445, 741–744 (2007)

  8. 8.

    , , , & Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006)

  9. 9.

    et al. QuickPIC: a highly efficient fully parallelized PIC code for plasma-based acceleration. J. Phys. Conf. Ser. 46, 190–199 (2006)

  10. 10.

    , , & An improved iteration loop for the three dimensional quasi-static particle-in-cell algorithm: QuickPIC. J. Comput. Phys. 250, 165–177 (2013)

  11. 11.

    et al. Multi-GeV energy gain in a plasma-wakefield accelerator. Phys. Rev. Lett. 95, 054802 (2005)

  12. 12.

    et al. Meter-scale plasma-wakefield accelerator driven by a matched electron beam. Phys. Rev. Lett. 93, 014802 (2004)

  13. 13.

    et al. Ultra high-gradient energy loss by a pulsed electron beam in a plasma. IEEE Proc. (2001 Particle Accelerator Conf.) 1, 126–128 (2001)

  14. 14.

    Physical mechanisms in the plasma wake-field accelerator. Phys. Rev. A 33, 2056–2064 (1986)

  15. 15.

    et al. Beam loading in the nonlinear regime of plasma-based acceleration. Phys. Rev. Lett. 101, 145002 (2008)

  16. 16.

    et al. Experimental observation of plasma wake-field acceleration. Phys. Rev. Lett. 61, 98–101 (1988)

  17. 17.

    et al. Photo-ionized lithium source for plasma accelerator applications. IEEE Trans. (Plasma Sci.) 27, 791–799 (1999)

  18. 18.

    et al. Laser ionized preformed plasma at FACET. Plasma Phys. Contr. Fusion 56, 084011 (2014)

  19. 19.

    et al. A beam driven plasma-wakefield linear collider: from Higgs factory to multi-TeV. In Electronic Proceedings of the Snowmass 2013 Community Study on the Future of High-Energy Physics (2013)

Download references

Acknowledgements

The FACET E200 plasma wakefield acceleration experiment was built and has been operated with funding from the United States Department of Energy. Work at SLAC was supported by DOE contract DE-AC02-76SF00515 and also through the Research Council of Norway. Work at UCLA was supported by DOE contracts DE-FG02-92-ER40727 and DE-SC0010064. Simulations were performed on the UCLA Hoffman2 and Dawson2 computers and on Blue Waters through NSF OCI-1036224. Simulation work at UCLA was supported by DOE contracts DE-SC0008491 and DE-SC0008316, and NSF contracts ACI-1339893 and PHY-0960344. The work of W.L. was partially supported by NSFC 11175102, the Thousand Young Talents Program and the Tsinghua University Initiative Scientific Research Program.

Author information

Affiliations

  1. SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

    • M. Litos
    • , E. Adli
    • , C. I. Clarke
    • , S. Corde
    • , J. P. Delahaye
    • , R. J. England
    • , A. S. Fisher
    • , J. Frederico
    • , S. Gessner
    • , S. Z. Green
    • , M. J. Hogan
    • , D. Walz
    • , G. White
    • , Z. Wu
    • , V. Yakimenko
    •  & G. Yocky
  2. Department of Physics, University of Oslo, 0316 Oslo, Norway

    • E. Adli
  3. Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095, USA

    • W. An
    •  & W. B. Mori
  4. Department of Electrical Engineering, University of California Los Angeles, Los Angeles, California 90095, USA

    • C. E. Clayton
    • , C. Joshi
    • , K. A. Marsh
    •  & N. Vafaei-Najafabadi
  5. Department of Engineering Physics, Tsinghua University, Beijing 100084, China

    • W. Lu
  6. Max Planck Institute for Physics, Munich 80805, Germany

    • P. Muggli

Authors

  1. Search for M. Litos in:

  2. Search for E. Adli in:

  3. Search for W. An in:

  4. Search for C. I. Clarke in:

  5. Search for C. E. Clayton in:

  6. Search for S. Corde in:

  7. Search for J. P. Delahaye in:

  8. Search for R. J. England in:

  9. Search for A. S. Fisher in:

  10. Search for J. Frederico in:

  11. Search for S. Gessner in:

  12. Search for S. Z. Green in:

  13. Search for M. J. Hogan in:

  14. Search for C. Joshi in:

  15. Search for W. Lu in:

  16. Search for K. A. Marsh in:

  17. Search for W. B. Mori in:

  18. Search for P. Muggli in:

  19. Search for N. Vafaei-Najafabadi in:

  20. Search for D. Walz in:

  21. Search for G. White in:

  22. Search for Z. Wu in:

  23. Search for V. Yakimenko in:

  24. Search for G. Yocky in:

Contributions

All authors contributed extensively to the work presented in this paper.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to M. Litos.

Extended data

Supplementary information

Videos

  1. 1.

    Simulation of beam-driven plasma wakefield acceleration

    The video shows 120 successive frames from a simulation of the electron beam‐driven plasma wakefield acceleration process using the 3D particle-in-cell code QuickPIC9,10. The input beam and plasma parameters are based on those of the experiment. The upper frame of the movie shows a slice through the center of electron beam and plasma wake structure, where x is the dimension transverse to the motion, ξ = z-ct is the dimension parallel to the motion, and Ez is the on-axis longitudinal electric field. The plasma electron density is represented in blue, while the beam density is represented in red. The ion density (now shown) is uniform. The lower frame of the video shows the evolution of the longitudinal phase space of the electron beam, using the color scale along the bottom for the beam charge density. The video depicts the beam-plasma interaction over the full length of the plasma source, including propagation before and after the 10cm plasma density ramps on either end of the 26cm flat-top density region.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13882

Further reading

  • Computational screening of organic polymer dielectrics for novel accelerator technologies

    • Ghanshyam Pilania
    • , Eric Weis
    • , Ethan M. Walker
    • , Robert D. Gilbertson
    • , Ross E. Muenchausen
    •  & Evgenya I. Simakov

    Scientific Reports (2018)

  • Acceleration of electrons in the plasma wakefield of a proton bunch

    • E. Adli
    • , A. Ahuja
    • , O. Apsimon
    • , R. Apsimon
    • , A.-M. Bachmann
    • , D. Barrientos
    • , F. Batsch
    • , J. Bauche
    • , V. K. Berglyd Olsen
    • , M. Bernardini
    • , T. Bohl
    • , C. Bracco
    • , F. Braunmüller
    • , G. Burt
    • , B. Buttenschön
    • , A. Caldwell
    • , M. Cascella
    • , J. Chappell
    • , E. Chevallay
    • , M. Chung
    • , D. Cooke
    • , H. Damerau
    • , L. Deacon
    • , L. H. Deubner
    • , A. Dexter
    • , S. Doebert
    • , J. Farmer
    • , V. N. Fedosseev
    • , R. Fiorito
    • , R. A. Fonseca
    • , F. Friebel
    • , L. Garolfi
    • , S. Gessner
    • , I. Gorgisyan
    • , A. A. Gorn
    • , E. Granados
    • , O. Grulke
    • , E. Gschwendtner
    • , J. Hansen
    • , A. Helm
    • , J. R. Henderson
    • , M. Hüther
    • , M. Ibison
    • , L. Jensen
    • , S. Jolly
    • , F. Keeble
    • , S.-Y. Kim
    • , F. Kraus
    • , Y. Li
    • , S. Liu
    • , N. Lopes
    • , K. V. Lotov
    • , L. Maricalva Brun
    • , M. Martyanov
    • , S. Mazzoni
    • , D. Medina Godoy
    • , V. A. Minakov
    • , J. Mitchell
    • , J. C. Molendijk
    • , J. T. Moody
    • , M. Moreira
    • , P. Muggli
    • , E. Öz
    • , C. Pasquino
    • , A. Pardons
    • , F. Peña Asmus
    • , K. Pepitone
    • , A. Perera
    • , A. Petrenko
    • , S. Pitman
    • , A. Pukhov
    • , S. Rey
    • , K. Rieger
    • , H. Ruhl
    • , J. S. Schmidt
    • , I. A. Shalimova
    • , P. Sherwood
    • , L. O. Silva
    • , L. Soby
    • , A. P. Sosedkin
    • , R. Speroni
    • , R. I. Spitsyn
    • , P. V. Tuev
    • , M. Turner
    • , F. Velotti
    • , L. Verra
    • , V. A. Verzilov
    • , J. Vieira
    • , C. P. Welsch
    • , B. Williamson
    • , M. Wing
    • , B. Woolley
    •  & G. Xia

    Nature (2018)

  • Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

    • G. G. Manahan
    • , A. F. Habib
    • , P. Scherkl
    • , P. Delinikolas
    • , A. Beaton
    • , A. Knetsch
    • , O. Karger
    • , G. Wittig
    • , T. Heinemann
    • , Z. M. Sheng
    • , J. R. Cary
    • , D. L. Bruhwiler
    • , J. B. Rosenzweig
    •  & B. Hidding

    Nature Communications (2017)

  • Acceleration of a trailing positron bunch in a plasma wakefield accelerator

    • A. Doche
    • , C. Beekman
    • , S. Corde
    • , J. M. Allen
    • , C. I. Clarke
    • , J. Frederico
    • , S. J. Gessner
    • , S. Z. Green
    • , M. J. Hogan
    • , B. O’Shea
    • , V. Yakimenko
    • , W. An
    • , C. E. Clayton
    • , C. Joshi
    • , K. A. Marsh
    • , W. B. Mori
    • , N. Vafaei-Najafabadi
    • , M. D. Litos
    • , E. Adli
    • , C. A. Lindstrøm
    •  & W. Lu

    Scientific Reports (2017)

  • Generation of double pulses at the Shanghai soft X-ray free electron laser facility

    • Zhen Wang
    • , Chao Feng
    • , Qiang Gu
    • , Li-Hua Yu
    •  & Zhen-Tang Zhao

    Nuclear Science and Techniques (2017)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.