Abstract

Vibrational spectroscopies using infrared radiation1,2, Raman scattering3, neutrons4, low-energy electrons5 and inelastic electron tunnelling6 are powerful techniques that can analyse bonding arrangements, identify chemical compounds and probe many other important properties of materials. The spatial resolution of these spectroscopies is typically one micrometre or more, although it can reach a few tens of nanometres or even a few ångströms when enhanced by the presence of a sharp metallic tip6,7. If vibrational spectroscopy could be combined with the spatial resolution and flexibility of the transmission electron microscope, it would open up the study of vibrational modes in many different types of nanostructures. Unfortunately, the energy resolution of electron energy loss spectroscopy performed in the electron microscope has until now been too poor to allow such a combination. Recent developments that have improved the attainable energy resolution of electron energy loss spectroscopy in a scanning transmission electron microscope to around ten millielectronvolts now allow vibrational spectroscopy to be carried out in the electron microscope. Here we describe the innovations responsible for the progress, and present examples of applications in inorganic and organic materials, including the detection of hydrogen. We also demonstrate that the vibrational signal has both high- and low-spatial-resolution components, that the first component can be used to map vibrational features at nanometre-level resolution, and that the second component can be used for analysis carried out with the beam positioned just outside the sample—that is, for ‘aloof’ spectroscopy that largely avoids radiation damage.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004)

  2. 2.

    & Fourier Transform Infrared Spectrometry 2nd edn (Wiley, 2007)

  3. 3.

    Raman Spectroscopy for Chemical Analysis (Wiley, 2000)

  4. 4.

    , , & Vibrational Spectroscopy With Neutrons (World Scientific, 2005)

  5. 5.

    & Electron Energy Loss Spectroscopy and Surface Vibrations (Academic, 1982)

  6. 6.

    , & Single molecule vibrational spectroscopy and microscopy. Science 280, 1732–1735 (1998)

  7. 7.

    et al. Tunable photon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343, 1125–1129 (2014)

  8. 8.

    , & Correction of the spherical aberration of a 200 kV TEM by means of a hexapole-corrector. Optik 99, 167–179 (1995)

  9. 9.

    , , , & Aberration correction in the STEM. Inst. Phys. Conf. Ser. 153, 35–40 (1997)

  10. 10.

    et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998)

  11. 11.

    , & Sub-Ångstrom resolution using aberration corrected electron optics. Nature 418, 617–620 (2002)

  12. 12.

    , , & Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev. Lett. 102, 096101 (2009)

  13. 13.

    et al. Atom-by-atom structural and chemical analysis by annular dark field electron microscopy. Nature 464, 571–574 (2010)

  14. 14.

    & Atom-by-atom spectroscopy at graphene edge. Nature 468, 1088–1090 (2010)

  15. 15.

    et al. Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 109, 206803 (2012)

  16. 16.

    et al. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy. Nano Lett. 13, 4989–4995 (2013)

  17. 17.

    , , & Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62, 3–21 (2013)

  18. 18.

    , & Interaction of 25-keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibration. Phys. Rev. Lett. 17, 379–381 (1966)

  19. 19.

    , , & Development of a high energy-resolution electron energy loss spectroscopy microscope. J. Microsc. 194, 203–209 (1999)

  20. 20.

    & Dielectric theory of localized energy loss spectroscopy. Ultramicroscopy 28, 40–42 (1989)

  21. 21.

    et al. Near-field electron energy loss spectroscopy of nanoparticles. Phys. Rev. Lett. 80, 782–785 (1998)

  22. 22.

    & Electron spectroscopy from outside – aloof beam or near field? Inst. Phys. Conf. Ser. 161, 327–330 (1999)

  23. 23.

    & Excitations at interfaces and small particles. Ultramicroscopy 18, 427–4334 (1985)

  24. 24.

    Valence electron excitations and plasmon oscillations in thin films, surfaces, interfaces and small particles. Micron 27, 265–299 (1996)

  25. 25.

    Optical excitations in electron microscope. Rev. Mod. Phys. 82, 209–275 (2010)

  26. 26.

    & Atomic-scale optical and vibrational spectroscopy with low loss EELS. Microsc. Microanal. 19 (suppl. 2). 1130–1131 (2013)

  27. 27.

    Localization of high-energy electron scattering from atomic vibrations. Phys. Rev. B 89, 054103 (2014)

  28. 28.

    Is localised infra red spectroscopy now possible in the electron microscope? Microsc. Microanal. 20, 671–677 (2014)

  29. 29.

    et al. Energy-filtered high-angle dark field mapping of ultra-light elements. Microsc. Microanal. 20, (suppl. 3)558–559 (2014)

  30. 30.

    , , eds. Scanning Transmission Electron Microscopy (Springer, 2011)

  31. 31.

    A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)

  32. 32.

    Electron Energy Loss Spectroscopy in the Electron Microscope 3rd edn (Springer, 2011);

  33. 33.

    , , & Monochromized 200 kV (S)TEM. Microsc. Microanal. 8 (suppl. 2). 70–71 (2012)

  34. 34.

    , , & Design and first applications of a post-column imaging filter. Microsc. Microanal. Microstruct. 3, 187–199 (1992)

  35. 35.

    et al. The GIF Quantum, a next generation post-column imaging energy filter. Ultramicroscopy 110, 962–970 (2010)

  36. 36.

    et al. Towards sub-10 meV energy resolution STEM-EELS. Inst. Phys. Conf. Ser. 522, 012023 (2014)

  37. 37.

    et al. An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179–195 (2008)

  38. 38.

    , , & in Scanning Transmission Electron Microscopy: Imaging and Analysis (eds & ) 613–656 (Springer, 2011)

  39. 39.

    & Interpretation of the infrared spectra of fused silica. J. Am. Ceram. Soc. 53, 69–73 (1970)

  40. 40.

    & Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys. Condens. Matter 9, 1–20 (1997)

  41. 41.

    et al. Structural characterization of nm SiC films grown on Si. Appl. Phys. Lett. 62, 3135–3137 (1993)

  42. 42.

    et al. Hydrogen interaction and bound multiphonon states in vibrational spectra of titanium hydrides. Z. Phys. Chem. 179, 335–342 (1993)

Download references

Acknowledgements

We thank A. Howie and J.-C. Idrobo for discussions, W. J. Bowman, J. Bruley, J. H. Butler, V. Domnich, R. A. Haber, Y. Ikuhara, M. R. Libera, D. S. Lowry and V. Nicolosi for provision of samples, J. Mardinly for help with running the instruments, our co-workers at Nion, especially N. J. Bacon, G. J. Corbin, P. J. Cramer, Z. Dellby, R. W. Hayner, P. Hrncirik, P. Phoungphidok, M. C. Sarahan, G. S. Skone, Z. Szilagyi and T. Yoo for help with the construction of the hardware, electronics and software for HERMES, and C. Trevor of Gatan Inc. for an instability-analysing script. We also acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. Financial support for the purchase of the microscopes was provided by National Science Foundation grants DMR MRI 0821796 (Arizona State University) and DMR MRI-R2 959905 (Rutgers University). Department of Energy grant DE-SC0004954 provided support for P.A.C. and microscopy performed at Arizona State University, and Department of Energy grant DE-SC0005132 provided support for P.E.B., M.J.L. and microscopy performed at Rutgers University. Additional support was provided by the Department of Energy (grant DE-SC0007694), the Natural Sciences and Engineering Council of Canada, the UK Engineering and Physical Research Council (capital equipment grant EP/J021156/1), Arizona State University, Rutgers University and Nion Co.

Author information

Author notes

    • Jiangtao Zhu

    Present address: TDK Headway Technologies Incorporated, Milpitas, California 95035, USA.

Affiliations

  1. Nion Company, 1102 Eighth Street, Kirkland, Washington 98033, USA

    • Ondrej L. Krivanek
    • , Tracy C. Lovejoy
    •  & Niklas Dellby
  2. Department of Physics, Arizona State University, Tempe, Arizona 85287, USA

    • Ondrej L. Krivanek
    •  & Peter Rez
  3. LeRoy Eyring Center for Solid State Science, Arizona State University, Tempe, Arizona 85287, USA

    • Toshihiro Aoki
    • , Emmanuel Soignard
    •  & Jiangtao Zhu
  4. Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA

    • R. W. Carpenter
    •  & Emmanuel Soignard
  5. Institute for Advanced Materials, Devices and Nanotechnology, Rutgers University, Piscataway, New Jersey 08854, USA

    • Philip E. Batson
    •  & Maureen J. Lagos
  6. Departments of Physics and Materials Science, Rutgers University, Piscataway, New Jersey 08854, USA

    • Philip E. Batson
    •  & Maureen J. Lagos
  7. Department of Physics, University of Alberta, Edmonton T6G 2E1, Canada

    • Ray F. Egerton
  8. School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA

    • Peter A. Crozier

Authors

  1. Search for Ondrej L. Krivanek in:

  2. Search for Tracy C. Lovejoy in:

  3. Search for Niklas Dellby in:

  4. Search for Toshihiro Aoki in:

  5. Search for R. W. Carpenter in:

  6. Search for Peter Rez in:

  7. Search for Emmanuel Soignard in:

  8. Search for Jiangtao Zhu in:

  9. Search for Philip E. Batson in:

  10. Search for Maureen J. Lagos in:

  11. Search for Ray F. Egerton in:

  12. Search for Peter A. Crozier in:

Contributions

P.A.C., O.L.K. and P.R. initiated the project, P.A.C., O.L.K. and J.Z. prepared samples, T.A., P.E.B., N.D., O.L.K., M.J.L., T.C.L. and J.Z. obtained electron microscope spectra and images, P.A.C. and E.S. obtained infrared and Raman spectra, T.C.L., N.D., R.F.E. and J.Z. analysed EELS results, P.R. performed theoretical simulations, P.E.B., R.W.C., N.D., R.F.E., O.L.K., T.C.L. and P.R. advised on theoretical interpretation, P.E.B., O.L.K., T.C.L. and E.S. prepared the figures, and O.L.K. and P.R. wrote the paper. All the authors read and commented on the manuscript.

Competing interests

N.D., O.L.K. and T.C.L. have a financial interest in Nion Company.

Corresponding authors

Correspondence to Ondrej L. Krivanek or Peter A. Crozier.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13870

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.