Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The power of relativistic jets is larger than the luminosity of their accretion disks

Abstract

Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon1. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation2,3,4,5,6,7,8, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations9. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiative jet power versus disk luminosity.
Figure 2: Jet power versus accretion power.

Similar content being viewed by others

References

  1. Blandford, R. D. & Znajek, R. L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 179, 433–456 (1977)

    ADS  Google Scholar 

  2. Rawlings, S. & Saunders, R. Evidence for a common central-engine mechanism in all extragalactic radio sources. Nature 349, 138–140 (1991)

    ADS  Google Scholar 

  3. Celotti, A. & Fabian, A. C. The Kinetic power and luminosity of parsec-scale radio jets – an argument for heavy jets. Mon. Not. R. Astron. Soc. 264, 228–236 (1993)

    ADS  CAS  Google Scholar 

  4. Celotti, A., Padovani, P. & Ghisellini, G. Jets and accretion processes in active galactic nuclei: further clues. Mon. Not. R. Astron. Soc. 286, 415–424 (1997)

    ADS  Google Scholar 

  5. Maraschi, L. & Tavecchio, F. The jet–disk connection and blazar unification. Astrophys. J. 593, 667–675 (2003)

    ADS  Google Scholar 

  6. Punsly, B. & Tingay, S. J. PKS 1018–42: a powerful, kinetically dominated quasar. Astrophys. J. 640, L21–L24 (2006)

    ADS  CAS  Google Scholar 

  7. Celotti, A. & Ghisellini, G. The power of blazar jets. Mon. Not. R. Astron. Soc. 385, 283–300 (2008)

    ADS  CAS  Google Scholar 

  8. Ghisellini, G. et al. General physical properties of bright Fermi blazars. Mon. Not. R. Astron. Soc. 402, 497–518 (2010)

    ADS  CAS  Google Scholar 

  9. Tchekhovskoy, A., Narayan, R. & McKinney, J. C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 418, L79–L83 (2011)

    ADS  Google Scholar 

  10. Zamaninasab, M., Clausen–Brown, E., Savolainen, T. & Tchekhoskoy, A. Dynamically important magnetic fields near accreting supermassive black holes. Nature 510, 126–128 (2014)

    ADS  CAS  PubMed  Google Scholar 

  11. Thorne, K. Disk–accretion onto a black hole. II. Evolution of the hole. Astrophys. J. 191, 507–519 (1974)

    ADS  Google Scholar 

  12. Shaw, M. S., Romani, R. W. & Cotter, G. et al. Spectroscopy of broad–line blazars from 1LAC. Astrophys. J. 748, 49 (2012)

    ADS  Google Scholar 

  13. Shaw, M. S., Romani, R. W. & Cotter, G. et al. Spectroscopy of the largest ever γ-ray-selected BL Lac sample. Astrophys. J. 764, 135 (2013)

    ADS  Google Scholar 

  14. Francis, J. et al. A high signal–to–noise ratio composite quasar spectrum. Astrophys. J. 373, 465–470 (1991)

    ADS  CAS  Google Scholar 

  15. Vanden Berk, D. E., Richards, G. T. & Bauer, A. Composite quasar spectra from the Sloan Digital Sky Survey. Astron. J. 122, 549–564 (2001)

    ADS  Google Scholar 

  16. Calderone, G., Ghisellini, G., Colpi, M. & Dotti, M. Black hole mass estimate for a sample of radio-loud narrow-line Seyfert 1 galaxies. Mon. Not. R. Astron. Soc. 431, 210–239 (2013)

    ADS  Google Scholar 

  17. Ghisellini, G. & Tavecchio, F. Canonical high–power blazars. Mon. Not. R. Astron. Soc. 397, 985–1002 (2009)

    ADS  CAS  Google Scholar 

  18. Ghisellini, G. & Tavecchio, F. Compton rockets and the minimum power of relativistic jets. Mon. Not. R. Astron. Soc. 409, L79–L83 (2010)

    ADS  Google Scholar 

  19. Nolan, P. L., Abdo, A. A. & Ackermann, M. et al. Fermi Large Area Telescope second source catalog. Astrophys. J. Suppl. Ser. 199, 31 (2012)

    ADS  Google Scholar 

  20. Ghirlanda, G., Ghisellini, G., Tavecchio, F., Foschini, L. & Bonnoli, G. The radio–γ-ray connection in Fermi blazars. Mon. Not. R. Astron. Soc. 413, 852–862 (2011)

    ADS  Google Scholar 

  21. Nemmen, R. S. et al. A universal scaling for the energetics of relativistic jets from black hole systems. Science 338, 1445–1448 (2012)

    ADS  CAS  PubMed  Google Scholar 

  22. Tchekhovskoy, A., Metzger, B. D., Giannios, D. & Kelley, L. Z. Swift J1644+57 gone MAD: the case for dynamically important magnetic flux threading the black hole in a jetted tidal disruption event. Mon. Not. R. Astron. Soc. 437, 2744–2760 (2014)

    ADS  Google Scholar 

  23. Peterson, B. M. & Wandel, A. Evidence for supermassive black holes in active galactic nuclei from emission-line reverberation. Astrophys. J. 540, L13–L16 (2000)

    ADS  CAS  Google Scholar 

  24. McLure, R. J. & Dunlop, J. S. The cosmological evolution of quasar black hole masses. Mon. Not. R. Astron. Soc. 352, 1390–1404 (2004)

    ADS  CAS  Google Scholar 

  25. Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006)

    ADS  CAS  Google Scholar 

  26. Shakura, N. I. & Sunyaev, R. A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  27. Livio, M., Ogilvie, G. I. & Pringle, J. E. Extracting energy from black holes: the relative importance of the Blandford-Znajek mechanism. Astrophys. J. 512, 100–104 (1999)

    ADS  Google Scholar 

  28. Meier, D. L. Grand unification of AGN and the accretion and spin paradigms. New Astron. Rev. 46, 247–255 (2002)

    ADS  Google Scholar 

  29. Tchekhovskoy, A., McKinney, J. C. & Narayan, R. General relativistic modeling of magnetized jets from accreting black holes. J. Phys. Conf. Ser. 372, 012040 (2012)

    Google Scholar 

  30. Sikora, M., Stawarz, L. & Lasota, J.-P. Radio loudness of active galactic nuclei: observational facts and theoretical implications. Astrophys. J. 658, 815–828 (2007)

    ADS  CAS  Google Scholar 

  31. Abdo, A. A. et al. The first catalog of active galactic nuclei detected by the Fermi Large Area Telescope. Astrophys. J. 715, 429–457 (2010)

    ADS  CAS  Google Scholar 

  32. Ackermann, M. et al. The second catalog of active galactic nuclei detected by the Fermi Large Area Telescope. Astrophys. J. 743, 171 (2011)

    ADS  Google Scholar 

  33. Shen, Y. et al. A catalog of quasar properties from Sloan Digital Sky Survey data release 7. Astrophys. J. Supp. Ser. 194, 45 (2011)

    ADS  Google Scholar 

  34. Ghisellini, G. Extragalactic relativistic jets. AIP Conf. Proc. 1381, 180–198 (2011)

    ADS  CAS  Google Scholar 

  35. Sbarrato, T. et al. Blazar candidates beyond redshift 4 observed with GROND. Mon. Not. R. Astron. Soc. 433, 2182–2193 (2013)

    ADS  Google Scholar 

  36. Fossati, G., Maraschi, L., Celotti, A., Comastri, A. & Ghisellini, G. A unifying view of the spectral energy distributions of blazars. Mon. Not. R. Astron. Soc. 299, 433–448 (1998)

    ADS  Google Scholar 

  37. Donato, D., Ghisellini, G., Tagliaferri, G. & Fossati, G. Hard X-ray properties of blazars. Astron. Astrophys. 375, 739–751 (2001)

    ADS  Google Scholar 

  38. Bonnoli, G., Ghisellini, G., Foschini, L., Tavecchio, F. & Ghirlanda, G. The γ-ray brightest days of the blazar 3C 454.3. Mon. Not. R. Astron. Soc. 410, 368–380 (2011)

    ADS  CAS  Google Scholar 

  39. Ghisellini, G. & Tavecchio, F. Canonical high-power blazars. Mon. Not. R. Astron. Soc. 397, 985–1002 (2009)

    ADS  CAS  Google Scholar 

  40. Nalewajko, K., Begelman, M. C. & Sikora, M. Constraining the location of gamma-ray flares in luminous blazars. Astrophys. J. 789, 161 (2014)

    ADS  Google Scholar 

  41. Böttcher, M., Reimer, A., Sweeney, K. & Prakash, A. Leptonic and hadronic modeling of Fermi-detected blazars. Astrophys. J. 768, 54 (2013)

    ADS  Google Scholar 

  42. Bentz, M. C., Peterson, B. M., Pogge, R. W., Vestergaard, M. & Onken, C. A. The radius–luminosity relationship for active galactic nuclei: the effect of host–galaxy starlight on luminosity measurements. Astrophys. J. 644, 133–142 (2006)

    ADS  Google Scholar 

  43. Koshida, S., Minezaki, T. & Yoshii, Y. et al. Reverberation measurements of the inner radius of the dust torus in 17 Seyfert galaxies. Astrophys. J. 788, 159 (2014)

    ADS  Google Scholar 

  44. Dermer, C. On the beaming statistics of γ-ray sources. Astrophys. J. 446, L63–L66 (1995)

    ADS  Google Scholar 

  45. Sikora, M. & Madejski, G. On pair content and variability of subparsec jets in quasars. Astrophys. J. 534, 109–113 (2000)

    ADS  CAS  Google Scholar 

  46. Tavecchio, F., Maraschi, L. & Ghisellini, G. Constraints on the physical parameters of TeV blazars. Astrophys. J. 509, 608–619 (1998)

    ADS  Google Scholar 

  47. Ghisellini, G. & Celotti, A. Relativistic large-scale jets and minimum power requirements. Mon. Not. R. Astron. Soc. 327, 739–743 (2001)

    ADS  CAS  Google Scholar 

  48. Ghisellini, G. & Madau, P. On the origin of the γ-ray emission in blazars. Mon. Not. R. Astron. Soc. 280, 67–76 (1996)

    ADS  Google Scholar 

  49. Ghisellini, G. Electron-positron pairs in blazar jets and γ-ray loud radio galaxies. Mon. Not. R. Astron. Soc. 424, L26–L30 (2012)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

F.T. and L.M. acknowledge partial funding through a PRIN–INAF 2011 grant.

Author information

Authors and Affiliations

Authors

Contributions

G.G. wrote the manuscript and fitted all blazars presented. F.T., L.M., A.C. and T.S. contributed to the discussion of the implications of the results.

Corresponding author

Correspondence to G. Ghisellini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Jet power versus radiative jet power.

We compare the total jet power and the radiative jet power for the blazars in our sample. The grey lines, as labelled, respectively correspond to equality and to Pjet equal to 10-fold and 100-fold Prad. Same symbols as in Fig. 1. The average error bar is indicated.

Extended Data Figure 2 Distribution of relevant quantities.

a, Normalized redshift distribution for FSRQs (light hatching) and BL Lacs (heavy hatching) in our sample. b, Normalized distribution of the ratio log(Ldisk/LEdd) for FSRQs in our sample. The black hole mass is the virial mass, calculated on the basis of the width of the broad lines12, compared with a log-normal distribution having a width of σ = 0.35 dex. c, Distribution of the bulk Lorentz factor. Hatching as in a. The plotted normal distribution has a width of σ = 1.4. d, Distribution of the ratio log(Pjet/Ldisk) for our sources, including BL Lacs (hatching as in a). The shown log-normal distribution has a width of σ = 0.48 dex.

Extended Data Figure 3 Distribution of jet powers.

Jet power distribution for FSRQs (light hatching) and BL Lacs (heavy hatching) in our sample, compared with the disk luminosity distribution as labelled: Pp is the kinetic power of the (cold) protons, assuming one proton per emitting electron; Pe is the power in relativistic emitting electrons; PB is the jet Poynting flux; Prad is the power that the jet has spent in producing the observed radiation; Ldisk is the luminosity of the accretion disk. All distributions are fitted with a log-normal distribution. The corresponding value of σ (in dex) is reported. The average values of the distributions are 〈log(Ldisk)〉 = 45.5, 〈log(Prad)〉 = 45.3, 〈log(PB)〉 = 45.0, 〈log(Pe)〉 = 44.4, 〈log(Pp)〉 = 46.4 (units of luminosity and power are erg s−1).

Supplementary information

Supplementary Table 1

This table contains relevant parameters of the blazars in this study. Col. 1 and Col. 2: AR and Dec (J2000); Col. 3: redshift; Col. 4 – Col. 7: Logarithm of Prad, Pe, PB, Pp (powers in units of erg s1); Col. 8: bulk Lorentz factor; Col. 9: viewing angle in degrees; Col. 10: Logarithm of the disk luminosity (in units of erg s1) as resulting from disk fitting; Col. 11: Logarithm of the disk luminosity (in units of erg s1) as measured from the broad emission lines; Col. 12 – Col. 14: logarithm of the black hole mass (in units of the solar mass) estimated through the virial method12 using the H (Col. 12), MgII (Col. 13) and CIV (Col. 14) broad emission lines. (XLSX 90 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghisellini, G., Tavecchio, F., Maraschi, L. et al. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 515, 376–378 (2014). https://doi.org/10.1038/nature13856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13856

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing