Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Belowground biodiversity and ecosystem functioning

Subjects

Abstract

Evidence is mounting that the immense diversity of microorganisms and animals that live belowground contributes significantly to shaping aboveground biodiversity and the functioning of terrestrial ecosystems. Our understanding of how this belowground biodiversity is distributed, and how it regulates the structure and functioning of terrestrial ecosystems, is rapidly growing. Evidence also points to soil biodiversity as having a key role in determining the ecological and evolutionary responses of terrestrial ecosystems to current and future environmental change. Here we review recent progress and propose avenues for further research in this field.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A selection of organisms of the soil food web.
Figure 2: Belowground responses and feedbacks triggered by climate change.

References

  1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012)

    ADS  CAS  PubMed  Google Scholar 

  2. Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010)

    Google Scholar 

  3. Wardle, D. A. Communities and Ecosystems: Linking the Aboveground and Belowground Components (Princeton Univ. Press, 2002)

    Google Scholar 

  4. Wall D. H., et al. (eds) Soil Ecology and Ecosystem Services (Oxford Univ. Press, 2012)

  5. Fierer, N. & Lennon, J. T. The generation and maintenance of diversity in microbial communities. Am. J. Bot. 98, 439–448 (2011)

    PubMed  Google Scholar 

  6. Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002)

    ADS  CAS  PubMed  Google Scholar 

  7. Callaway, R. M. & Maron, J. L. What have exotic plant invasions taught us over the past 20 years? Trends Ecol. Evol. 21, 369–374 (2006)

    PubMed  Google Scholar 

  8. Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 7, 652–659 (2013)

    CAS  PubMed  Google Scholar 

  9. Tedersoo, L. et al. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol. Ecol. 21, 4160–4170 (2012)

    PubMed  Google Scholar 

  10. Öpik, M., Moora, M., Liira, J. & Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 94, 778–790 (2006)

    Google Scholar 

  11. Wu, T., Ayres, E., Bardgett, R. D., Wall, D. H. & Garey, J. R. Molecular study of worldwide distribution and diversity of soil animals. Proc. Natl Acad. Sci. USA 108, 17720–17725 (2011)This study of soils taken from a range of biomes and latitudes showed that cosmopolitan soil animals are extremely rare, and that there is a lack of coupling between aboveground and soil animal diversity at a global scale.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000)

    CAS  PubMed  Google Scholar 

  13. Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A. & Cleveland, C. C. Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249 (2009)

    PubMed  Google Scholar 

  14. Eggleton, P. & Bignell, D. E. in Insects in a Changing Environment (eds Harrington, R. & Stork, N. E. ) 473–497 (Academic Press, 1995)

    Google Scholar 

  15. Nielsen, U. N. et al. Global-scale patterns of soil nematode assemblage structure in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 23, 968–978 (2014)

    Google Scholar 

  16. Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000)

    ADS  CAS  PubMed  Google Scholar 

  17. Ettema, C. H. & Wardle, D. A. Spatial soil ecology. Trends Ecol. Evol. 17, 177–183 (2002)

    Google Scholar 

  18. Broeckling, C. D., Broz, A. K., Bergelson, J., Manter, D. K. & Vivanco, J. M. Root exudates regulate soil fungal community composition and diversity. Appl. Environ. Microbiol. 74, 738–744 (2008)

    CAS  PubMed  Google Scholar 

  19. Pollierer, M. M., Langel, R., Körner, C., Maraun, M. & Scheu, S. The underestimated importance of belowground carbon input for forest soil animal food webs. Ecol. Lett. 10, 729–736 (2007)

    PubMed  Google Scholar 

  20. Henry, S. et al. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ. Microbiol. 10, 3082–3092 (2008)

    CAS  PubMed  Google Scholar 

  21. Badri, D. V. & Vivanco, J. M. Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 (2009)

    CAS  PubMed  Google Scholar 

  22. Rasmann, S. et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434, 732–737 (2005)

    ADS  CAS  PubMed  Google Scholar 

  23. Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011)

    ADS  CAS  PubMed  Google Scholar 

  24. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006)This study showed that continental scale patterns of soil bacterial diversity and richness are largely explained by soil pH, diversity and richness being greater in neutral than acidic soils.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saetre, P. & Bååth, E. Spatial variation and patterns of soil microbial community structure in a mixed spruce–birch stand. Soil Biol. Biochem. 32, 909–917 (2000)

    CAS  Google Scholar 

  26. Delgado-Baquerizo, M., Covelo, F., Maestre, F. T. & Gallardo, A. Biological soil crusts affect small-scale spatial patterns of inorganic N in a semiarid Mediterranean grassland. J. Arid Environ. 91, 147–150 (2013)

    ADS  Google Scholar 

  27. Robertson, G. P. & Freckman, D. W. The spatial distribution of nematode trophic groups across a cultivated ecosystem. Ecology 76, 1425–1432 (1995)

    Google Scholar 

  28. Courtright, E. M., Wall, D. H. & Virginia, R. A. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarct. Sci. 13, 9–17 (2001)

    ADS  Google Scholar 

  29. Placella, S. A., Brodie, E. L. & Firestone, M. K. Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc. Natl Acad. Sci. USA 109, 10931–10936 (2012)This study showed that sudden increases in soil water availability following rainfall events after prolonged drought cause rapid and sequential resurrection of distinct, phylogenetically clustered groups of microorganisms, and that these rapid microbial responses are associated with significant pulses of CO 2 production from soil.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Placella, S. A. & Firestone, M. K. Transcriptional response of nitrifying communities to wetting of dry soil. Appl. Environ. Microbiol. 79, 3294–3302 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bahn, M., Schmitt, M., Siegwolf, R., Richter, A. & Brüggemann, N. Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol. 182, 451–460 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Högberg, M. N. et al. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytol. 187, 485–493 (2010)

    PubMed  Google Scholar 

  33. Hamilton, E. W. & Frank, D. A. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82, 2397–2402 (2001)

    Google Scholar 

  34. Ayres, E., Dromph, K. M., Cook, R., Ostle, N. & Bardgett, R. D. The influence of below-ground herbivory and defoliation of a legume on nitrogen transfer to neighbouring plants. Funct. Ecol. 21, 256–263 (2007)

    Google Scholar 

  35. Guitian, R. & Bardgett, R. D. Plant and soil microbial responses to defoliation in temperate semi-natural grassland. Plant Soil 220, 271–277 (2000)

    CAS  Google Scholar 

  36. Mikola, J. et al. Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol. Monogr. 79, 221–244 (2009)

    Google Scholar 

  37. Schadt, C. W., Martin, A. P., Lipson, D. A. & Schmidt, S. K. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301, 1359–1361 (2003)

    ADS  CAS  PubMed  Google Scholar 

  38. Lauber, C. L., Ramirez, K. S., Aanderud, Z., Lennon, J. & Fierer, N. Temporal variability in soil microbial communities across land-use types. ISME J. 7, 1641–1650 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yeates, G. W., Hawke, M. F. & Rijkse, W. C. Changes in soil fauna and soil conditions under Pinus radiata agroforestry regimes during a 25-year tree rotation. Biol. Fertil. Soils 31, 391–406 (2000)

    Google Scholar 

  40. Neutel, A. M., Heesterbeek, J. A. P. & de Ruiter, P. C. Stability in real food webs: weak links in long loops. Science 296, 1120–1123 (2002)

    ADS  CAS  PubMed  Google Scholar 

  41. Kardol, P., Bezemer, T. M. & van der Putten, W. H. Temporal variation in plant–soil feedback controls succession. Ecol. Lett. 9, 1080–1088 (2006)

    PubMed  Google Scholar 

  42. Walker, L. R., Wardle, D. A., Bardgett, R. D. & Clarkson, B. D. The use of chronosequences in studies of ecological succession and soil development. J. Ecol. 98, 725–736 (2010)

    Google Scholar 

  43. Anderson, J. M., Ineson, P. & Huish, S. A. Nitrogen and cation mobilization by soil fauna feeding on leaf litter and soil organic-matter from deciduous woodlands. Soil Biol. Biochem. 15, 463–467 (1983)

    Google Scholar 

  44. Clarholm, M. Interactions of bacteria, protozoa and plants leading to mineralization of soil-nitrogen. Soil Biol. Biochem. 17, 181–187 (1985)

    CAS  Google Scholar 

  45. Ingham, R. E., Trofymow, J. A., Ingham, E. R. & Coleman, D. C. Interactions of bacteria, fungi, and their nematode grazers - effects on nutrient cycling and plant-growth. Ecol. Monogr. 55, 119–140 (1985)

    Google Scholar 

  46. Alphei, J., Bonkowski, M. & Scheu, S. Protozoa, Nematoda and Lumbricidae in the rhizosphere of Hordelymus europaeus (Poaceae): Faunal interactions, response of microorganisms and effects on plant growth. Oecologia 106, 111–126 (1996)

    ADS  PubMed  Google Scholar 

  47. Laakso, J. & Setälä, H. Sensitivity of primary production to changes in the architecture of belowground food webs. Oikos 87, 57–64 (1999)

    Google Scholar 

  48. Hedlund, K. & Öhrn, M. S. Tritrophic interactions in a soil community enhance decomposition rates. Oikos 88, 585–591 (2000)

    Google Scholar 

  49. Hunt, H. W. & Wall, D. H. Modelling the effects of loss of soil biodiversity on ecosystem function. Glob. Change Biol. 8, 33–50 (2002)

    ADS  Google Scholar 

  50. de Ruiter, P. C., Neutel, A. M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995)

    ADS  CAS  PubMed  Google Scholar 

  51. Heemsbergen, D. A. et al. Biodiversity effects on soil processes explained by interspecific functional dissimilarity. Science 306, 1019–1020 (2004)This study showed that functional dissimilarity among detritivorous species, not species number, drives community compositional effects on decomposition and soil respiration.

    ADS  CAS  PubMed  Google Scholar 

  52. Nielsen, U. N., Ayres, E., Wall, D. H. & Bardgett, R. D. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Eur. J. Soil Sci. 62, 105–116 (2011)

    CAS  Google Scholar 

  53. Setälä, H., Berg, M. P. & Jones, T. H. in Biological Diversity and Function in Soils (eds Bardgett, R. D., Usher, M. B. & Hopkins, D. W. ) 236–249 (Cambridge Univ. Press, 2005)

    Google Scholar 

  54. Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014)

    ADS  CAS  PubMed  Google Scholar 

  55. de Vries, F. T. et al. Soil food web properties explain ecosystem services across European land use systems. Proc. Natl Acad. Sci. USA 110, 14296–14301 (2013)This study showed that soil food web properties strongly and consistently predict processes of carbon and nitrogen cycling across land use systems and geographic locations, and they were a better predictor of these processes than agricultural land use intensity.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Vries, F. T. et al. Land use alters the resistance and resilience of soil food webs to drought. Nature Clim. Change 2, 276–280 (2012)

    ADS  Google Scholar 

  57. Zhou, J., Deng, Y., Luo, F., He, Z. L. & Yang, Y. F. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2 . MBio 2, e00122–11 (2011)

    PubMed  PubMed Central  Google Scholar 

  58. Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013)

    ADS  CAS  PubMed  Google Scholar 

  59. Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004)

    ADS  CAS  PubMed  Google Scholar 

  61. Bever, J. D., Westover, K. M. & Antonovics, J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. J. Ecol. 85, 561–573 (1997)

    Google Scholar 

  62. Gange, A. C., Brown, V. K. & Sinclair, G. S. Vesicular–arbuscular mycorrhizal fungi: a determinant of plant community structure in early succession. Funct. Ecol. 7, 616–622 (1993)

    Google Scholar 

  63. Van der Putten, W. H., van Dijk, C. & Peters, B. A. M. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature 362, 53–56 (1993)

    ADS  Google Scholar 

  64. Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002)

    ADS  CAS  PubMed  Google Scholar 

  65. Maron, J. L., Marler, M., Klironomos, J. N. & Cleveland, C. C. Soil fungal pathogens and the relationship between plant diversity and productivity. Ecol. Lett. 14, 36–41 (2011)

    PubMed  Google Scholar 

  66. Packer, A. & Clay, K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404, 278–281 (2000)

    ADS  CAS  PubMed  Google Scholar 

  67. Eisenhauer, N. & Scheu, S. Invasibility of experimental grassland communities: the role of earthworms, plant functional group identity and seed size. Oikos 117, 1026–1036 (2008)

    Google Scholar 

  68. van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998)

    ADS  CAS  Google Scholar 

  69. Wagg, C., Jansa, J., Stadler, M., Schmid, B. & van der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant–plant competition. Ecology 92, 1303–1313 (2011)

    PubMed  Google Scholar 

  70. Bradford, M. A. et al. Impacts of soil faunal community composition on model grassland ecosystems. Science 298, 615–618 (2002)

    ADS  CAS  PubMed  Google Scholar 

  71. Wagg, C., Bender, S. F., Widmer, F. & van der Heijden, M. G. A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266–5270 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20, 617–624 (2005)

    PubMed  Google Scholar 

  73. Biere, A. & Bennett, A. E. Three-way interactions between plants, microbes and insects. Funct. Ecol. 27, 567–573 (2013)

    Google Scholar 

  74. Soler, R. et al. Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J. Chem. Ecol. 38, 755–767 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Babikova, Z. et al. Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol. Lett. 16, 835–843 (2013)This study showed that plants that were not attacked by aboveground aphids induced defence responses when connected by arbuscular mycorrhizal fungi to plants that were attacked by aphids, suggesting that mycorrhizal networks may enable plants to anticipate insect attack by defence induction.

    PubMed  Google Scholar 

  76. Kostenko, O., van de Voorde, T. F. J., Mulder, P. P. J., van der Putten, W. H. & Bezemer, T. M. Legacy effects of aboveground–belowground interactions. Ecol. Lett. 15, 813–821 (2012)This study showed that feeding on plants by aboveground insects changed soil fungal community composition, which influenced both plant-feeding and carnivorous insects on plants that colonized this soil; indicating that aboveground multitrophic interactions are affected by those of the past through a legacy effect on soil biota.

    PubMed  Google Scholar 

  77. Garbeva, P., Hol, W. H. G., Termorshuizen, A. J., Kowalchuk, G. A. & de Boer, W. Fungistasis and general soil biostasis – a new synthesis. Soil Biol. Biochem. 43, 469–477 (2011)

    CAS  Google Scholar 

  78. Kiers, E. T. et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333, 880–882 (2011)This study showed that both plants and mycorrhizal fungi have control over mutual interactions and that plants may favour cooperating fungi over cheaters; findings suggest that the rhizosphere is a market place where goods are exchanged by equal partners, rather than where goods are stolen.

    ADS  CAS  PubMed  Google Scholar 

  79. Gange, A. C., Gange, E. G., Sparks, T. H. & Boddy, L. Rapid and recent changes in fungal fruiting patterns. Science 316, 71 (2007)

    ADS  CAS  PubMed  Google Scholar 

  80. Kauserud, H. et al. Mushroom fruiting and climate change. Proc. Natl Acad. Sci. USA 105, 3811–3814 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013)

    PubMed  Google Scholar 

  82. Cameron, T. C., O’Sullivan, D., Reynolds, A., Piertney, S. B. & Benton, T. G. Eco-evolutionary dynamics in response to selection on life-history. Ecol. Lett. 16, 754–763 (2013)

    PubMed  PubMed Central  Google Scholar 

  83. Philippot, L., Raaijmakers, J. M., Lemanceau, P. & van der Putten, W. H. Going back to the roots: the microbial ecology of the rhizosphere. Nature Rev. Microbiol. 11, 789–799 (2013)

    CAS  Google Scholar 

  84. Lau, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl Acad. Sci. USA 109, 14058–14062 (2012)This study showed that adaptive plant responses to drought stress are governed by rapid responses of soil microbial communities and suggests that plants may benefit from associations with diverse soil microbial communities when faced with rapid environmental change.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ayres, E. et al. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 41, 606–610 (2009)

    CAS  Google Scholar 

  86. Veen, G. F., Freschet, G. T., Ordonez, A. & Wardle, D. A. Litter quality and environmental controls of home-field advantage effects on litter decomposition. Oikos http://dx.doi.org/10.1111/oik.01374 (1 July 2014)

  87. Gundale, M. J. et al. Interactions with soil biota shift from negative to positive when a tree species is moved outside its native range. New Phytol. 202, 415–421 (2014)

    PubMed  Google Scholar 

  88. Diez, J. M. et al. Negative soil feedbacks accumulate over time for non-native plant species. Ecol. Lett. 13, 803–809 (2010)This study showed that non-native plant species introduced longer ago in New Zealand induce more soil pathogenic activity than species introduced more recently, indicating that negative soil feedback toward introduced plant species increases with time since introduction, which may ultimately contribute to their control.

    PubMed  Google Scholar 

  89. Dostál, P., Müllerová, J., Pyšek, P., Pergl, J. & Klinerová, T. The impact of an invasive plant changes over time. Ecol. Lett. 16, 1277–1284 (2013)

    PubMed  Google Scholar 

  90. Reinhart, K. O., Tytgat, T., Van der Putten, W. H. & Clay, K. Virulence of soil-borne pathogens and invasion by Prunus serotina. New Phytol. 186, 484–495 (2010)

    PubMed  Google Scholar 

  91. Lankau, R. A., Nuzzo, V., Spyreas, G. & Davis, A. S. Evolutionary limits ameliorate the negative impact of an invasive plant. Proc. Natl Acad. Sci. USA 106, 15362–15367 (2009)This study showed that introduced exotic plant species produce less phytotoxins with increasing time since introduction, which had strong impacts on soil community functioning; results suggest that effects of invasive species on soil biodiversity may change over time due to evolutionary processes in the plants.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Lankau, R. A. Resistance and recovery of soil microbial communities in the face of Alliaria petiolata invasions. New Phytol. 189, 536–548 (2011)

    PubMed  Google Scholar 

  93. Barberán, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351 (2012)

    PubMed  Google Scholar 

  94. Rooney, N., McCann, K., Gellner, G. & Moore, J. C. Structural asymmetry and the stability of diverse food webs. Nature 442, 265–269 (2006)

    ADS  CAS  PubMed  Google Scholar 

  95. Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity–magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002)

    ADS  CAS  PubMed  Google Scholar 

  96. Dykhuizen, D. E. Santa Rosalia revisited: why are there so many species of bacteria? Antonie van Leeuwenhoek 73, 25–33 (1998)

    CAS  PubMed  Google Scholar 

  97. Fierer, N. et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil. Appl. Environ. Microbiol. 73, 7059–7066 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014)

    Google Scholar 

  99. Öpik, M. et al. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23, 411–430 (2013)

    PubMed  Google Scholar 

  100. Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013)

    PubMed  Google Scholar 

  101. Kivlin, S. N., Hawkes, C. V. & Treseder, K. K. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 43, 2294–2303 (2011)

    CAS  Google Scholar 

  102. Miller, R. M., Reinhardt, D. R. & Jastrow, J. D. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103, 17–23 (1995)

    ADS  CAS  PubMed  Google Scholar 

  103. Neher, D. A., Wu, J., Barbercheck, M. E. & Anas, O. Ecosystem type affects interpretation of soil nematode community measures. Appl. Soil Ecol. 30, 47–64 (2005)

    Google Scholar 

  104. Yeates, G. W. & Bongers, T. Nematode diversity in agroecosystems. Agric. Ecosyst. Environ. 74, 113–135 (1999)

    Google Scholar 

  105. Noordijk J., Kleukers R. M. J. C., van Nieukerken E. J., van Loon A. J., eds. De Nederlandse biodiversiteit – Nederlandse Fauna 10 (Nederlands Centrum voor Biodiversiteit Naturalis & European Invertebrate Survey, 2010)

  106. Briones, M. J. I., Ineson, P. & Heinemeyer, A. Predicting potential impacts of climate change on the geographical distribution of enchytraeids: a meta-analysis approach. Glob. Change Biol. 13, 2252–2269 (2007)

    ADS  Google Scholar 

  107. Norton, R. A. & Behan-Pelletier, V. M. in A Manual of Acarology (eds Krantz, G. W. & Walter, D. E. ) 430–564 (Texas Tech Univ. Press, 2009)

    Google Scholar 

  108. Richard, B. et al. Spatial organization of earthworm assemblages in pastures of northwestern France. Eur. J. Soil Biol. 53, 62–69 (2012)

    Google Scholar 

  109. Lavelle, P. & Lapied, E. Endangered earthworms of Amazonia: an homage to Gilberto Righi. Pedobiologia 47, 419–427 (2003)

    Google Scholar 

Download references

Acknowledgements

This work was conceived as part of a symposium on Soil Biodiversity and Ecosystem Functioning at INTECOL, London 2013, which was supported by the British Ecological Society. The work was supported by the European Commission through the project Ecological Function and Biodiversity Indicators in European Soils (EcoFINDERS) (FP7-264465) and an ERC-ADV grant to W.H.v.d.P. We are grateful to P. Brinkman for logistical support, and A. Jones from the Joint Research Centre, Ispra, for providing photographs, and A. Bardgett for compiling Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

R.D.B and W.H.v.d.P contributed equally to the planning and writing of the manuscript.

Corresponding author

Correspondence to Richard D. Bardgett.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bardgett, R., van der Putten, W. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014). https://doi.org/10.1038/nature13855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13855

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing