Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Suppression of cooling by strong magnetic fields in white dwarf stars

Subjects

Abstract

Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs1,2,3,4, which has been a puzzle because magnetic fields are expected to decay with time5,6 but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate7,8,9,10, which has been variously attributed to surface brightness inhomogeneities similar to sunspots8,9,10,11,12, chemical inhomogeneities13,14 and other magneto-optical effects15,16,17. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modelling results for WD 1953-011.
Figure 2: Dependence of amplitude of the photometric variability of MWDs on their surface magnetic field strength Bs.
Figure 3: Some characteristic features in statistical distributions of MWDs.
Figure 4: Absolute values of spatial velocities |V| of MWDs versus their surface temperatures.

Similar content being viewed by others

References

  1. Valyavin, G. & Fabrika, S. White dwarfs magnetic fields evolution. Astron. Soc. Pacif. Conf. Ser. 169, 206–209 (1999)

    ADS  Google Scholar 

  2. Liebert, J., Bergeron, P. & Holberg, J. B. The true incidence of magnetism among field white dwarfs. Astron. J. 125, 348–353 (2003)

    Article  ADS  Google Scholar 

  3. Sion, E. M. et al. The white dwarfs within 25 pc of the Sun: kinematics and spectroscopic subtypes. Astron. J. 147, 129 (2014)

    Article  ADS  Google Scholar 

  4. Kepler, S. O. et al. Magnetic white dwarf stars in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 429, 2934–2944 (2013)

    Article  ADS  Google Scholar 

  5. Wendell, C. E., Van Horn, H. M. & Sargent, D. Magnetic field evolution in white dwarfs. Astrophys. J. 313, 284–297 (1987)

    Article  ADS  CAS  Google Scholar 

  6. Muslimov, A. G., Van Horn, H. M. & Wood, M. A. Magnetic field evolution in white dwarfs: the Hall effect and complexity of the field. Astrophys. J. 442, 758–767 (1995)

    Article  ADS  Google Scholar 

  7. Barstow, M. A. et al. RE J0317–853: the hottest known highly magnetic DA white dwarf. Mon. Not. R. Astron. Soc. 277, 971–985 (1995)

    Article  ADS  CAS  Google Scholar 

  8. Wade, G. A. et al. The magnetic white dwarf WD 1953–011: migrating magnetic and brightness spots? Astron. Soc. Pacif. Conf. Ser. 307, 569–572 (2003)

    ADS  Google Scholar 

  9. Brinkworth, C. S. et al. Rotational period of WD 1953–011—a magnetic white dwarf with a star-spot. Mon. Not. R. Astron. Soc. 357, 333–337 (2005)

    Article  ADS  Google Scholar 

  10. Brinkworth, C. S., Burleigh, M. R., Lawrie, K., Marsh, T. R. & Knigge, C. Measuring the rotational periods of isolated magnetic white dwarfs. Astrophys. J. 773, 47 (2013)

    Article  ADS  Google Scholar 

  11. Valyavin, G. et al. The peculiar magnetic field morphology of the white dwarf WD 1953–011: evidence for a large-scale magnetic flux tube? Astrophys. J. 683, 466–478 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Valyavin, G. et al. A study of the photometric variability of the peculiar magnetic white dwarf WD 1953–011. Astrophys. J. 734, 17 (2011)

    Article  ADS  Google Scholar 

  13. Liebert, J., Angel, J. R. P., Stockman, H. S., Spinrad, H. & Beaver, E. A. Feige 7—a hot, rotating magnetic white dwarf. Astrophys. J. 214, 457–470 (1977)

    Article  ADS  CAS  Google Scholar 

  14. Achilleos, N., Wickramasinghe, D. T., Liebert, J., Saffer, R. A. & Grauer, A. D. Exploring the peculiar magnetic field of Feige 7. Astrophys. J. 396, 273–288 (1992)

    Article  ADS  Google Scholar 

  15. Ferrario, L., Vennes, S., Wickramasinghe, D. T., Bailey, J. A. & Christian, D. J. EUVE J0317–855 A rapidly rotating, high-field magnetic white dwarf. Mon. Not. R. Astron. Soc. 292, 205–217 (1997)

    Article  ADS  CAS  Google Scholar 

  16. Martin, B. & Wickramasinghe, D. T. Cyclotron absorption in magnetic white dwarfs. Mon. Not. R. Astron. Soc. 189, 69–77 (1979)

    Article  ADS  Google Scholar 

  17. Wickramasinghe, D. T. & Martin, B. Magnetic blanketing in white dwarfs. Mon. Not. R. Astron. Soc. 223, 323–340 (1986)

    Article  ADS  CAS  Google Scholar 

  18. Schmidt, G. D. & Smith, P. S. A search for magnetic fields among DA white dwarfs. Astrophys. J. 448, 305–314 (1995)

    Article  ADS  Google Scholar 

  19. Koester, D., Dreizler, S., Weidemann, V. & Allard, N. F. Search for rotation in white dwarfs. Astron. Astrophys. 338, 612–622 (1998)

    ADS  Google Scholar 

  20. Maxted, P. F. L., Ferrario, L., Marsh, T. L. & Wickramasinghe, D. T. W. D. 1953–011: a magnetic white dwarf with peculiar field structure. Mon. Not. R. Astron. Soc. 315, L41–L44 (2000)

    Article  ADS  Google Scholar 

  21. Solanki, S. K. Sunspots: an overview. Astron. Astrophys. Rev. 11, 153–286 (2003)

    Article  ADS  Google Scholar 

  22. Shulyak, D., Tsymbal, V., Ryabchikova, T., Stütz, Ch. & Weiss, W. W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 428, 993–1000 (2004)

    Article  ADS  Google Scholar 

  23. D'Antona, F. &. Mazzitelli, I. White dwarf external layers. Astron. Astrophys. 74, 161–171 (1979)

    ADS  CAS  Google Scholar 

  24. Parker, E. N. Cosmical Magnetic Fields, their Origin and their Activity 207–214 (Clarendon Press, 1979)

    Google Scholar 

  25. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects 82–105 (Wiley, 1983)

    Book  Google Scholar 

  26. Cowling, T. G. Stellar structure—stars and stellar systems. Comp. Astron. Astrophys. 8, 425–463 (1965)

    Google Scholar 

  27. Chandrasekhar, S. On the inhibition of convection by a magnetic field. Phil. Mag. 43, 501–532 (1952)

    Article  MathSciNet  Google Scholar 

  28. Kawka, A., Vennes, S., Schmidt, G. D., Wickramasinghe, D. T. & Koch, R. Spectropolarimetric survey of hydrogen-rich white dwarf stars. Astrophys. J. 654, 499–520 (2007)

    Article  ADS  CAS  Google Scholar 

  29. Landstreet, J. D. et al. On the incidence of weak magnetic fields in DA white dwarfs. Astron. Astrophys. 545, A30 (2012)

    Article  Google Scholar 

  30. Anselowitz, T., Wasatonic, R., Matthews, K., Sion, E. M. & McCook, G. P. The parentage of magnetic white dwarfs: implications from their space motions. Publ. Astron. Soc. Pacif. 111, 702–708 (1999)

    Article  ADS  Google Scholar 

  31. Lemke, M. Extended VCS Stark broadening tables for hydrogen–Lyman to Brackett series. Astron. Astrophys. 122 (Suppl.). 285–292 (1997)

    ADS  CAS  Google Scholar 

  32. Vidal, C. R., Cooper, J. & Smith, E. W. Hydrogen Stark-broadening tables. Astrophys. J. 25 (Suppl.). 37–135 (1973)

    Article  ADS  CAS  Google Scholar 

  33. Hummer, D. G. &. Mihalas, D. The equation of state for stellar envelopes. I—an occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 331, 794–814 (1988)

    Article  ADS  CAS  Google Scholar 

  34. Canuto, V. M. & Mazzitelli, I. Stellar turbulent convection—a new model and applications. Astrophys. J. 370, 295–311 (1991)

    Article  ADS  Google Scholar 

  35. Canuto, V. M. & Mazzitelli, I. Further improvements of a new model for turbulent convection in stars. Astrophys. J. 389, 724–730 (1992)

    Article  ADS  Google Scholar 

  36. Böhm-Vitense, E. Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. [in German] Z. Astrophys. 46, 108–143 (1958)

    Google Scholar 

  37. Angel, J. R. P., Borra, E. F. & Landstreet, J. D. The magnetic fields of white dwarfs. Astrophys. J. 45 (Suppl.). 457–474 (1981)

    Article  ADS  CAS  Google Scholar 

  38. Sion, E. M., Fritz, M. L., McMullin, J. P. & Lallo, M. D. Kinematical tests of white dwarf formation channels and evolution. Astron. J. 96, 251–274 (1988)

    Article  ADS  Google Scholar 

  39. Sion, E. M. & Liebert, J. The space motions and luminosity function of white dwarf. Astrophys. J. 213, 468–478 (1977)

    Article  ADS  CAS  Google Scholar 

  40. Bergeron, P., Legget, S. K. & Ruiz, M. T. Photometric and spectroscopic analysis of cool white dwarfs with trigonometric parallax measurements. Astrophys. J. 133 (Suppl.). 413–449 (2001)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

G.V. thanks J. Landstreet and S. Fabrika for discussions and practical help in interpreting the results. G.V. also thanks E. Kaisina for help in the preparation of the manuscript. G.V. and G.A.G. acknowledge the support of Chilean fund FONDECYT-regular (project 1120190). G.V. and D.H. acknowledge financial support from CONACyT, Mexico (grant 180817). G.V., T.B. and A.B. acknowledge financial support from the ministry of science and education of the Russian Federation (contracts 14.518.11.7070 and 16.518.11.7073). D.S. acknowledges financial support from CRC963 Astrophysical Flow Instabilities and Turbulence (project A16-A17). G.A.W. is supported by a Natural Sciences and Engineering Research Council (NSERC Canada) Discovery Grant. S.V.Z. acknowledges support from DGAPA/PAPIIT IN100614 and CONACYT 151858 projects. L.F.M. acknowledges financial support from the Universidad Nacional Autónoma de México under grant PAPIIT IN104612.

Author information

Authors and Affiliations

Authors

Contributions

G.V, D.S. and G.A.W. analysed the main ideas, drew the basic conclusions presented in this study and wrote the text. G.V., D.S. and S.B. modelled the magnetic and atmospheric properties of WD 1953-011. All authors participated in the organization, conduct and reduction of spectral, spectropolarimetric and photometric observations of WD 1953-011 at different European, Russian, Ukrainian and Mexican observatories between 2002 and 2014.

Corresponding author

Correspondence to G. Valyavin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valyavin, G., Shulyak, D., Wade, G. et al. Suppression of cooling by strong magnetic fields in white dwarf stars. Nature 515, 88–91 (2014). https://doi.org/10.1038/nature13836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing