Abstract
Isolated cool white dwarf stars more often have strong magnetic fields than young, hotter white dwarfs1,2,3,4, which has been a puzzle because magnetic fields are expected to decay with time5,6 but a cool surface suggests that the star is old. In addition, some white dwarfs with strong fields vary in brightness as they rotate7,8,9,10, which has been variously attributed to surface brightness inhomogeneities similar to sunspots8,9,10,11,12, chemical inhomogeneities13,14 and other magneto-optical effects15,16,17. Here we describe optical observations of the brightness and magnetic field of the cool white dwarf WD 1953-011 taken over about eight years, and the results of an analysis of its surface temperature and magnetic field distribution. We find that the magnetic field suppresses atmospheric convection, leading to dark spots in the most magnetized areas. We also find that strong fields are sufficient to suppress convection over the entire surface in cool magnetic white dwarfs, which inhibits their cooling evolution relative to weakly magnetic and non-magnetic white dwarfs, making them appear younger than they truly are. This explains the long-standing mystery of why magnetic fields are more common amongst cool white dwarfs, and implies that the currently accepted ages of strongly magnetic white dwarfs are systematically too young.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Valyavin, G. & Fabrika, S. White dwarfs magnetic fields evolution. Astron. Soc. Pacif. Conf. Ser. 169, 206–209 (1999)
Liebert, J., Bergeron, P. & Holberg, J. B. The true incidence of magnetism among field white dwarfs. Astron. J. 125, 348–353 (2003)
Sion, E. M. et al. The white dwarfs within 25 pc of the Sun: kinematics and spectroscopic subtypes. Astron. J. 147, 129 (2014)
Kepler, S. O. et al. Magnetic white dwarf stars in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 429, 2934–2944 (2013)
Wendell, C. E., Van Horn, H. M. & Sargent, D. Magnetic field evolution in white dwarfs. Astrophys. J. 313, 284–297 (1987)
Muslimov, A. G., Van Horn, H. M. & Wood, M. A. Magnetic field evolution in white dwarfs: the Hall effect and complexity of the field. Astrophys. J. 442, 758–767 (1995)
Barstow, M. A. et al. RE J0317–853: the hottest known highly magnetic DA white dwarf. Mon. Not. R. Astron. Soc. 277, 971–985 (1995)
Wade, G. A. et al. The magnetic white dwarf WD 1953–011: migrating magnetic and brightness spots? Astron. Soc. Pacif. Conf. Ser. 307, 569–572 (2003)
Brinkworth, C. S. et al. Rotational period of WD 1953–011—a magnetic white dwarf with a star-spot. Mon. Not. R. Astron. Soc. 357, 333–337 (2005)
Brinkworth, C. S., Burleigh, M. R., Lawrie, K., Marsh, T. R. & Knigge, C. Measuring the rotational periods of isolated magnetic white dwarfs. Astrophys. J. 773, 47 (2013)
Valyavin, G. et al. The peculiar magnetic field morphology of the white dwarf WD 1953–011: evidence for a large-scale magnetic flux tube? Astrophys. J. 683, 466–478 (2008)
Valyavin, G. et al. A study of the photometric variability of the peculiar magnetic white dwarf WD 1953–011. Astrophys. J. 734, 17 (2011)
Liebert, J., Angel, J. R. P., Stockman, H. S., Spinrad, H. & Beaver, E. A. Feige 7—a hot, rotating magnetic white dwarf. Astrophys. J. 214, 457–470 (1977)
Achilleos, N., Wickramasinghe, D. T., Liebert, J., Saffer, R. A. & Grauer, A. D. Exploring the peculiar magnetic field of Feige 7. Astrophys. J. 396, 273–288 (1992)
Ferrario, L., Vennes, S., Wickramasinghe, D. T., Bailey, J. A. & Christian, D. J. EUVE J0317–855 A rapidly rotating, high-field magnetic white dwarf. Mon. Not. R. Astron. Soc. 292, 205–217 (1997)
Martin, B. & Wickramasinghe, D. T. Cyclotron absorption in magnetic white dwarfs. Mon. Not. R. Astron. Soc. 189, 69–77 (1979)
Wickramasinghe, D. T. & Martin, B. Magnetic blanketing in white dwarfs. Mon. Not. R. Astron. Soc. 223, 323–340 (1986)
Schmidt, G. D. & Smith, P. S. A search for magnetic fields among DA white dwarfs. Astrophys. J. 448, 305–314 (1995)
Koester, D., Dreizler, S., Weidemann, V. & Allard, N. F. Search for rotation in white dwarfs. Astron. Astrophys. 338, 612–622 (1998)
Maxted, P. F. L., Ferrario, L., Marsh, T. L. & Wickramasinghe, D. T. W. D. 1953–011: a magnetic white dwarf with peculiar field structure. Mon. Not. R. Astron. Soc. 315, L41–L44 (2000)
Solanki, S. K. Sunspots: an overview. Astron. Astrophys. Rev. 11, 153–286 (2003)
Shulyak, D., Tsymbal, V., Ryabchikova, T., Stütz, Ch. & Weiss, W. W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 428, 993–1000 (2004)
D'Antona, F. &. Mazzitelli, I. White dwarf external layers. Astron. Astrophys. 74, 161–171 (1979)
Parker, E. N. Cosmical Magnetic Fields, their Origin and their Activity 207–214 (Clarendon Press, 1979)
Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs, and Neutron Stars: the Physics of Compact Objects 82–105 (Wiley, 1983)
Cowling, T. G. Stellar structure—stars and stellar systems. Comp. Astron. Astrophys. 8, 425–463 (1965)
Chandrasekhar, S. On the inhibition of convection by a magnetic field. Phil. Mag. 43, 501–532 (1952)
Kawka, A., Vennes, S., Schmidt, G. D., Wickramasinghe, D. T. & Koch, R. Spectropolarimetric survey of hydrogen-rich white dwarf stars. Astrophys. J. 654, 499–520 (2007)
Landstreet, J. D. et al. On the incidence of weak magnetic fields in DA white dwarfs. Astron. Astrophys. 545, A30 (2012)
Anselowitz, T., Wasatonic, R., Matthews, K., Sion, E. M. & McCook, G. P. The parentage of magnetic white dwarfs: implications from their space motions. Publ. Astron. Soc. Pacif. 111, 702–708 (1999)
Lemke, M. Extended VCS Stark broadening tables for hydrogen–Lyman to Brackett series. Astron. Astrophys. 122 (Suppl.). 285–292 (1997)
Vidal, C. R., Cooper, J. & Smith, E. W. Hydrogen Stark-broadening tables. Astrophys. J. 25 (Suppl.). 37–135 (1973)
Hummer, D. G. &. Mihalas, D. The equation of state for stellar envelopes. I—an occupation probability formalism for the truncation of internal partition functions. Astrophys. J. 331, 794–814 (1988)
Canuto, V. M. & Mazzitelli, I. Stellar turbulent convection—a new model and applications. Astrophys. J. 370, 295–311 (1991)
Canuto, V. M. & Mazzitelli, I. Further improvements of a new model for turbulent convection in stars. Astrophys. J. 389, 724–730 (1992)
Böhm-Vitense, E. Über die Wasserstoffkonvektionszone in Sternen verschiedener Effektivtemperaturen und Leuchtkräfte. [in German] Z. Astrophys. 46, 108–143 (1958)
Angel, J. R. P., Borra, E. F. & Landstreet, J. D. The magnetic fields of white dwarfs. Astrophys. J. 45 (Suppl.). 457–474 (1981)
Sion, E. M., Fritz, M. L., McMullin, J. P. & Lallo, M. D. Kinematical tests of white dwarf formation channels and evolution. Astron. J. 96, 251–274 (1988)
Sion, E. M. & Liebert, J. The space motions and luminosity function of white dwarf. Astrophys. J. 213, 468–478 (1977)
Bergeron, P., Legget, S. K. & Ruiz, M. T. Photometric and spectroscopic analysis of cool white dwarfs with trigonometric parallax measurements. Astrophys. J. 133 (Suppl.). 413–449 (2001)
Acknowledgements
G.V. thanks J. Landstreet and S. Fabrika for discussions and practical help in interpreting the results. G.V. also thanks E. Kaisina for help in the preparation of the manuscript. G.V. and G.A.G. acknowledge the support of Chilean fund FONDECYT-regular (project 1120190). G.V. and D.H. acknowledge financial support from CONACyT, Mexico (grant 180817). G.V., T.B. and A.B. acknowledge financial support from the ministry of science and education of the Russian Federation (contracts 14.518.11.7070 and 16.518.11.7073). D.S. acknowledges financial support from CRC963 Astrophysical Flow Instabilities and Turbulence (project A16-A17). G.A.W. is supported by a Natural Sciences and Engineering Research Council (NSERC Canada) Discovery Grant. S.V.Z. acknowledges support from DGAPA/PAPIIT IN100614 and CONACYT 151858 projects. L.F.M. acknowledges financial support from the Universidad Nacional Autónoma de México under grant PAPIIT IN104612.
Author information
Authors and Affiliations
Contributions
G.V, D.S. and G.A.W. analysed the main ideas, drew the basic conclusions presented in this study and wrote the text. G.V., D.S. and S.B. modelled the magnetic and atmospheric properties of WD 1953-011. All authors participated in the organization, conduct and reduction of spectral, spectropolarimetric and photometric observations of WD 1953-011 at different European, Russian, Ukrainian and Mexican observatories between 2002 and 2014.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Valyavin, G., Shulyak, D., Wade, G. et al. Suppression of cooling by strong magnetic fields in white dwarf stars. Nature 515, 88–91 (2014). https://doi.org/10.1038/nature13836
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature13836
This article is cited by
-
Collision term for uniformly magnetized plasmas
Reviews of Modern Plasma Physics (2023)
-
A rotating white dwarf shows different compositions on its opposite faces
Nature (2023)
-
A high spectral resolution spectrograph with fiber input for the Big Azimuthal Telescope of SAO RAS. Improvement of the spectral module
Optical Review (2016)