Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum tomography of an electron

Abstract

The complete knowledge of a quantum state allows the prediction of the probability of all possible measurement outcomes, a crucial step in quantum mechanics. It can be provided by tomographic methods1 which have been applied to atomic2,3, molecular4, spin5,6 and photonic states. For optical7,8,9 or microwave10,11,12,13 photons, standard tomography is obtained by mixing the unknown state with a large-amplitude coherent photon field. However, for fermions such as electrons in condensed matter, this approach is not applicable because fermionic fields are limited to small amplitudes (at most one particle per state), and so far no determination of an electron wavefunction has been made. Recent proposals involving quantum conductors suggest that the wavefunction can be obtained by measuring the time-dependent current of electronic wave interferometers14 or the current noise of electronic Hanbury-Brown/Twiss interferometers15,16,17. Here we show that such measurements are possible despite the extreme noise sensitivity required, and present the reconstructed wavefunction quasi-probability, or Wigner distribution function17, of single electrons injected into a ballistic conductor. Many identical electrons are prepared in well-controlled quantum states called levitons18 by repeatedly applying Lorentzian voltage pulses to a contact on the conductor19,20,21. After passing through an electron beam splitter, the levitons are mixed with a weak-amplitude fermionic field formed by a coherent superposition of electron–hole pairs generated by a small alternating current with a frequency that is a multiple of the voltage pulse frequency16. Antibunching of the electrons and holes with the levitons at the beam splitter changes the leviton partition statistics, and the noise variations provide the energy density matrix elements of the levitons. This demonstration of quantum tomography makes the developing field of electron quantum optics with ballistic conductors a new test-bed for quantum information with fermions20,22,23,24. These results may find direct application in probing the entanglement of electron flying quantum bits25, electron decoherence17 and electron interactions. They could also be applied to cold fermionic (or spin-1/2) atoms26.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of quantum wave tomography.
Figure 2: Measurement of the diagonal part of the energy density matrix.
Figure 3: Off-diagonal part of energy density matrix.
Figure 4: Wigner function and leviton wavefunction in the time domain.

Similar content being viewed by others

References

  1. Vogel, K. & Risken, H. Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989)

    Article  ADS  CAS  Google Scholar 

  2. Leibfried, D. et al. Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4281–4285 (1996)

    Article  ADS  CAS  Google Scholar 

  3. Kurtsiefer, C., Pfau, T. & Mlynek, J. Measurement of the Wigner function of an ensemble of helium atoms. Nature 386, 150–153 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Dunn, T. J., Walmsley, I. A. & Mukamel, S. Experimental determination of the quantum-mechanical state of a molecular vibrational mode using fluorescence tomography. Phys. Rev. Lett. 74, 884–887 (1995)

    Article  ADS  CAS  Google Scholar 

  5. Shulman, M. D. et al. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012)

    Article  ADS  CAS  Google Scholar 

  6. Medford, J. et al. Self-consistent measurement and state tomography of an exchange-only spin qubit. Nature Nanotechnol. 8, 654–659 (2013)

    Article  ADS  CAS  Google Scholar 

  7. Smithey, D. T., Beck, M., Raymer, M. G. & Faridani, A. Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Breitenbach, G., Schiller, S. & Mlynek, J. Measurement of the quantum states of squeezed light. Nature 387, 471–475 (1997)

    Article  ADS  CAS  Google Scholar 

  9. Lvovsky, A. I. et al. Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Bertet, P. et al. Direct measurement of the Wigner function of a one-photon Fock state in a cavity. Phys. Rev. Lett. 89, 200402 (2002)

    Article  ADS  CAS  Google Scholar 

  11. Houck, A. A. et al. Generating single microwave photons in a circuit. Nature 449, 328–331 (2007)

    Article  ADS  CAS  Google Scholar 

  12. Hofheinz, M. et al. Synthesizing arbitrary quantum states in a superconducting resonator. Nature 459, 546–549 (2009)

    Article  ADS  CAS  Google Scholar 

  13. Eichler, C. et al. Experimental tomographic state reconstruction of itinerant microwave photons. Phys. Rev. Lett. 106, 220503 (2011)

    Article  ADS  CAS  Google Scholar 

  14. Haack, G., Moskalets, M. & Büttiker, M. Glauber coherence of single-electron sources. Phys. Rev. B 87, 201302(R) (2013)

    Article  ADS  Google Scholar 

  15. Samuelsson, P. & Büttiker, M. Quantum sate tomography with quantum shot noise. Phys. Rev. B 73, 041305(R) (2006)

    Article  ADS  Google Scholar 

  16. Grenier, C. et al. Single-electron quantum tomography in quantum Hall edge channels. New J. Phys. 13, 093007 (2011)

    Article  ADS  Google Scholar 

  17. Ferraro, D. et al. Wigner function approach to single electron coherence in quantum Hall edge channels. Phys. Rev. B 88, 205303 (2013)

    Article  ADS  Google Scholar 

  18. Dubois, J. et al. Minimal-excitation states for electron quantum optics using levitons. Nature 502, 659–663 (2013)

    Article  ADS  CAS  Google Scholar 

  19. Levitov, L. S., Lee, H. & Lesovik, G. Electron counting statistics and coherent states of electric current. J. Math. Phys. 37, 4845–4886 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lebedev, A. V., Lesovik, G. V. & Blatter, G. Generating spin-entangled electron pairs in normal conductors using voltage pulses. Phys. Rev. B 72, 245314 (2005)

    Article  ADS  Google Scholar 

  21. Keeling, J., Klich, I. & Levitov, L. Minimal excitation states of electrons in one-dimensional wires. Phys. Rev. Lett. 97, 116403 (2006)

    Article  ADS  CAS  Google Scholar 

  22. Beenakker, C. W. J., Emary, C., Kindermann, M. & van Velsen, J. L. Proposal for production and detection of entangled electron-hole pairs in a degenerate electron gas. Phys. Rev. Lett. 91, 147901 (2003)

    Article  ADS  CAS  Google Scholar 

  23. Beenakker, C. W. J., Titov, M. & Trauzettel, B. Optimal spin-entangled electron-hole pair pump. Phys. Rev. Lett. 94, 186804 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Sherkunov, Y. B., d’Ambrumenil, N., Samuelsson, P. & Büttiker, M. Optimal pumping of orbital entanglement with single-particle emitters. Phys. Rev. B 85, 081108 (2012)

    Article  ADS  Google Scholar 

  25. Yamamoto, M. et al. Electrical control of a solid-state flying qubit. Nature Nanotechnol. 7, 247–251 (2012)

    Article  ADS  CAS  Google Scholar 

  26. Brantut, J. P. et al. Conduction of ultracold fermions through a mesoscopic channel. Science 337, 1069–1071 (2012)

    Article  ADS  CAS  Google Scholar 

  27. Polycarpou, C., Cassemiro, K. N., Venturi, G., Zavatta, A. & Bellini, M. Adaptive detection of arbitrarily shaped ultrashort quantum light states. Phys. Rev. Lett. 109, 053602 (2012)

    Article  ADS  CAS  Google Scholar 

  28. Dubois, J. et al. Integer and fractional charge Lorentzian voltage pulses analyzed in the framework of photon-assisted shot noise. Phys. Rev. B 88, 085301 (2013)

    Article  ADS  Google Scholar 

  29. Pedersen, M. H. & Büttiker, M. Scattering theory of photon-assisted electron transport. Phys. Rev. B 58, 12993 (1998)

    Article  ADS  CAS  Google Scholar 

  30. Dasenbrook, D., Flindt, C. & Büttiker, M. Floquet theory of electron waiting times in quantum-coherent conductors. Phys. Rev. Lett. 112, 146801 (2014)

    Article  ADS  Google Scholar 

  31. Bocquillon, E. et al. Coherence and indistinguishability of single electrons emitted by independent sources. Science 339, 1054–1057 (2013)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the ERC Advanced Grant 228273 MeQuaNo and thank P. Jacques for technical help, P. Pari, P. Forget and M. de Combarieu for cryogenic support, and P. Degiovanni and C. Grenier for discussions improving the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

D.C.G. designed the project. T.J. and P.R. made the measurements and did the data analysis. B.R. contributed to the data analysis. P.R., T.J., B.R. and D.C.G. wrote the article. The sample was provided by Y.J. on wafer from A.C.

Corresponding author

Correspondence to D. C. Glattli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Methods, Supplementary Text and Data, Supplementary Figures 1-3 and additional references. (PDF 540 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jullien, T., Roulleau, P., Roche, B. et al. Quantum tomography of an electron. Nature 514, 603–607 (2014). https://doi.org/10.1038/nature13821

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13821

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing