Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of an iridium-containing compound with a formal oxidation state of IX


One of the most important classifications in chemistry and within the periodic table is the concept of formal oxidation states1,2,3,4. The preparation and characterization of compounds containing elements with unusual oxidation states is of great interest to chemists5. The highest experimentally known formal oxidation state of any chemical element is at present VIII2,3,4, although higher oxidation states have been postulated6,7. Compounds with oxidation state VIII include several xenon compounds8 (for example XeO4 and XeO3F2) and the well-characterized species RuO4 and OsO4 (refs 2, 3, 4). Iridium, which has nine valence electrons, is predicted to have the greatest chance of being oxidized beyond the VIII oxidation state1. In recent matrix-isolation experiments, the IrO4 molecule was characterized as an isolated molecule in rare-gas matrices9. The valence electron configuration of iridium in IrO4 is 5d1, with a formal oxidation state of VIII. Removal of the remaining d electron from IrO4 would lead to the iridium tetroxide cation ([IrO4]+), which was recently predicted to be stable10 and in which iridium is in a formal oxidation state of IX. There has been some speculation about the formation of [IrO4]+ species11,12, but these experimental observations have not been structurally confirmed. Here we report the formation of [IrO4]+ and its identification by infrared photodissociation spectroscopy. Quantum-chemical calculations were carried out at the highest level of theory that is available today, and predict that the iridium tetroxide cation, with a Td-symmetrical structure and a d0 electron configuration, is the most stable of all possible [IrO4]+ isomers.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Mass spectra of the iridium oxide cations.
Figure 2: Infrared photodissociation spectra of the [193IrO4]+·Arn (n = 1–4) cations.
Figure 3: Optimized structures and energetic ordering of the different [IrO4]+ isomers.

Similar content being viewed by others


  1. Jørgensen, C. K. Oxidation Numbers and Oxidation States (Springer, 1969)

    Book  Google Scholar 

  2. Riedel, S. & Kaupp, M. The highest oxidation states of the transition metal elements. Coord. Chem. Rev. 253, 606–624 (2009)

    Article  CAS  Google Scholar 

  3. Riedel, S. in Comprehensive Inorganic Chemistry II (eds Reedijk, J. & Poeppelmeier, K. ) 187–221 (Elsevier, 2013)

    Book  Google Scholar 

  4. Schlöder, T. & Riedel, S. in Comprehensive Inorganic Chemistry Vol. 9 (ed. Alvarez, S. ) 227–243 (Elsevier, 2013)

    Book  Google Scholar 

  5. Jørgensen, C. K. New understanding of unusual oxidation states in the transition groups. Naturwissenschaften 63, 292 (1976)

    Article  ADS  Google Scholar 

  6. Pyykkö, P., Runeberg, N., Straka, M. & Dyall, K. G. Could uranium(XII) hexoxide, UO6 (Oh) exist? Chem. Phys. Lett. 328, 415–419 (2000)

    Article  ADS  Google Scholar 

  7. Xiao, H., Hu, H.-S., Schwarz, W. H. E. & Li, J. Theoretical investigations of geometry, electronic structure and stability of UO6: octahedral uranium hexoxide and its isomers. J. Phys. Chem. A 114, 8837–8844 (2010)

    Article  CAS  Google Scholar 

  8. Gerken, M. & Schrobilgen, G. J. Solution multi-NMR and Raman spectroscopic studies of thermodynamically unstable XeO4. The first 131Xe NMR study of a chemically bound xenon species. Inorg. Chem. 41, 198–204 (2002)

    Article  CAS  Google Scholar 

  9. Gong, Y., Zhou, M., Kaupp, M. & Riedel, S. Formation and characterization of the iridium tetraoxide molecule with iridium in the oxidation state VIII. Angew. Chem. Int. Ed. 48, 7879–7883 (2009)

    Article  CAS  Google Scholar 

  10. Himmel, D., Knapp, C., Patzschke, M. & Riedel, S. How far can we go? Quantum-chemical investigations of oxidation state IX. ChemPhysChem 11, 865–869 (2010)

    Article  CAS  Google Scholar 

  11. Rother, P., Wagner, F. & Zahn, U. Chemical consequences of the 193Os(β)193Ir decay in osmium compounds studied by the Mössbauer method. Radiochim. Acta 11, 203–210 (1969)

    Article  CAS  Google Scholar 

  12. Koyanagi, G. K., Caraiman, D., Blagojevic, V. & Bohme, D. K. Gas-phase reactions of transition-metal ions with molecular oxygen: room-temperature kinetics and periodicities in reactivity. J. Phys. Chem. A 106, 4581–4590 (2002)

    Article  CAS  Google Scholar 

  13. Wang, G. et al. Infrared photodissociation spectroscopy of mononuclear iron carbonyl anions. J. Phys. Chem. A 116, 2484–2489 (2012)

    Article  CAS  Google Scholar 

  14. Duncan, M. A. Infrared spectroscopy to probe structure and dynamics in metal ion-molecule complexes. Int. Rev. Phys. Chem. 22, 407–435 (2003)

    Article  CAS  ADS  Google Scholar 

  15. Okumura, M., Yeh, L. I., Myers, J. D. & Lee, Y. T. Infrared spectra of the solvated hydronium ion: vibrational predissociation spectroscopy of mass-selected H3O+·(H2O)n·(H2)m . J. Phys. Chem. 94, 3416–3427 (1990)

    Article  CAS  Google Scholar 

  16. Bieske, E. J. & Dopfer, O. High-resolution spectroscopy of cluster ions. Chem. Rev. 100, 3963–3998 (2000)

    Article  CAS  Google Scholar 

  17. Robertson, W. H. & Johnson, M. A. Molecular aspects of halide ion hydration: the cluster approach. Annu. Rev. Phys. Chem. 54, 173–213 (2003)

    Article  CAS  ADS  Google Scholar 

  18. Bach, R. D., Ayala, P. Y. & Schlegel, H. B. A reassessment of the bond dissociation energies of peroxides. An ab initio study. J. Am. Chem. Soc. 118, 12758–12765 (1996)

    Article  CAS  Google Scholar 

  19. Armentrout, P. B. & Li, F. X. Bond energy of IrO+: guided ion-beam and theoretical studies of the reaction of Ir+ (5F) with O2 . J. Phys. Chem. A 117, 7754–7766 (2013)

    Article  CAS  Google Scholar 

  20. Gong, Y., Zhou, M. F. & Andrews, L. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem. Rev. 109, 6765–6808 (2009)

    Article  CAS  Google Scholar 

  21. Zhou, M. F., Citra, A., Liang, B. Y. & Andrews, L. Infrared spectra and density functional calculations for MO2, MO3, (O2)MO2, MO4, MO2- (M = Re, Ru, Os) and ReO3-, ReO4- in solid neon and argon. J. Phys. Chem. A 104, 3457–3465 (2000)

    Article  CAS  Google Scholar 

  22. Christe, K. O., Wilson, R. D. & Goldberg, I. B. Some observations on the reaction chemistry of dioxygenyl salts and on the blue and purple compounds believed to be ClF3O2 . J. Fluor. Chem. 7, 543–549 (1976)

    Article  CAS  Google Scholar 

  23. Frisch, M. J. et al. Gaussian09, revision A.1 (Gaussian, Inc., 2009)

  24. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988)

    Article  CAS  ADS  Google Scholar 

  25. Becke, A. D. Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  ADS  Google Scholar 

  26. Lee, C., Yang, W. & Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988)

    Article  CAS  ADS  Google Scholar 

  27. Riedel, S., Straka, M. & Kaupp, M. Validation of density functional methods for computing structures and energies of mercury(IV) complexes. Phys. Chem. Chem. Phys. 6, 1122–1127 (2004)

    Article  CAS  Google Scholar 

  28. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    Article  ADS  Google Scholar 

  29. Kendall, R. A., Dunning, T. H. & Harrison, R. J., Jr Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96, 6796–6806 (1992)

    Article  CAS  ADS  Google Scholar 

  30. Woon, D. E. & Dunning, T. H., Jr Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98, 1358–1371 (1993)

    Article  CAS  ADS  Google Scholar 

  31. Peterson, K. A., Figgen, D., Dolg, M. & Stoll, H. Energy-consistent relativistic pseudopotentials and correlation consistent basis sets for the 4d elements Y–Pd. J. Chem. Phys. 126, 124101 (2007)

    Article  ADS  Google Scholar 

  32. Figgen, D., Peterson, K. A., Dolg, M. & Stoll, H. Energy-consistent pseudopotentials and correlation consistent basis sets for the 5d elements Hf–Pt. J. Chem. Phys. 130, 164108 (2009)

    Article  ADS  Google Scholar 

  33. Turbomole. Version 6.2, (TURBOMOLE Gmbh, 2011)

  34. Van Lenthe, E. & Baerends, E. J. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 24, 1142–1156 (2003)

    Article  CAS  Google Scholar 

  35. Van Lenthe, E., Baerends, E. J. & Snijders, J. G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 99, 4597–4610 (1993)

    Article  CAS  ADS  Google Scholar 

  36. ADF v 2013.01, (SCM, 2013)

  37. Fonseca Guerra, C., Snijders, J. G., Te Velde, G. & Baerends, E. J. Towards an order-N DFT method. Theor. Chem. Acc. 99, 391–403 (1998)

    Google Scholar 

  38. te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001)

    Article  CAS  Google Scholar 

  39. Stanton, J. F. et al. CFour 1.2 ed., (2010)

  40. Werner, H.-J. MOLPRO version 2008. 1, (2008)

  41. Aullón, G. & Alvarez, S. Oxidation states, atomic charges and orbital populations in transition metal complexes. Theor. Chem. Acc. 123, 67–73 (2009)

    Article  Google Scholar 

Download references


This work was supported by the Ministry of Science and Technology of China (2013CB834603 and 2012YQ220113-3), the National Natural Science Foundation of China (grant nos 21173053, 21433005 and 91026003), the Committee of Science and Technology of Shanghai (13XD1400800), the Fonds der Chemischen Industrie and the GRK 1582 ‘Fluorine as a key element’. We also acknowledge the Natural Sciences and Engineering Research Council of Canada for a Discovery Grant (G.J.S.) and for a postgraduate scholarship (J.T.G.). We are grateful to I. Krossing and H. Hillebrecht for their support.

Author information

Authors and Affiliations



G.W. and M.Z. designed and performed the gas-phase experiments, J.T.G. and G.J.S. attempted to synthesize [IrO4] salts, J.S., J.L., T.S. and S.R. performed the quantum chemical calculations. M.Z., G.J.S., J.L. and S.R. wrote the paper and supervised the experimental and theoretical parts. All authors discussed the results and commented on the manuscript at all stages.

Corresponding authors

Correspondence to Mingfei Zhou, Gary J. Schrobilgen or Sebastian Riedel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary References, Supplementary Tables 1-8, Supplementary Figures 1-12. (PDF 1119 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhou, M., Goettel, J. et al. Identification of an iridium-containing compound with a formal oxidation state of IX. Nature 514, 475–477 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing