Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Instrumentation for the detection and characterization of exoplanets

Abstract

In no other field of astrophysics has the impact of new instrumentation been as substantial as in the domain of exoplanets. Before 1995 our knowledge of exoplanets was mainly based on philosophical and theoretical considerations. The years that followed have been marked, instead, by surprising discoveries made possible by high-precision instruments. Over the past decade, the availability of new techniques has moved the focus of research from the detection to the characterization of exoplanets. Next-generation facilities will produce even more complementary data that will lead to a comprehensive view of exoplanet characteristics and, by comparison with theoretical models, to a better understanding of planet formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radial-velocity semi-amplitude of planetary-mass companions.
Figure 2: Detectability of planetary atmospheres.
Figure 3: Mass and semi-major axis of known planets.

Similar content being viewed by others

References

  1. Van de Kamp, P. Parallax, proper motion, acceleration, and orbital motion of Barnard's star. Astron. J. 74, 238 (1969).

    Article  ADS  Google Scholar 

  2. McCarthy, D. W. J. & Probst, R. G. Detection of an infrared source near VB 8: the first extra-solar planet? Bull. Am. Astron. Soc. 16, 965 (1984).

    ADS  Google Scholar 

  3. Latham, D. W., Stefanik, R. P., Mazeh, T., Mayor, M. & Burki, G. The unseen companion of HD114762 — a probable brown dwarf. Nature 339, 38–40 (1989).

    Article  ADS  Google Scholar 

  4. Wolszczan, A. & Frail, D. A. A planetary system around the millisecond pulsar PSR1257 + 12. Nature 355, 145–147 (1992).

    Article  ADS  Google Scholar 

  5. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995). This article reports the discovery of the first giant planet around a Sun-like star.

    Article  CAS  ADS  Google Scholar 

  6. Barge, P. et al. in The CoRoT Mission, Pre-Launch Status, Stellar Seismology and Planet Finding (eds Fridlund, M. et al.) (ESA, 2006).

    Google Scholar 

  7. Borucki, W. et al. KEPLER: search for Earth-size planets in the habitable zone. in Proc. IAU Symposium No. IAU253 (eds Pont, F., Sasselov, D. & Holman, M.) 289–299 (2009).

    Google Scholar 

  8. Griffin, R. F. A photoelectric radial-velocity spectrometer. Astrophys. J. 148, 465 (1967).

    Article  ADS  Google Scholar 

  9. Baranne, A., Mayor, M. & Poncet, J. L. Coravel — a new tool for radial velocity measurements. Vistas Astron. 23, 279–316 (1979).

    Article  ADS  Google Scholar 

  10. Campbell, B. & Walker, G. A. H. Precision radial velocities with an absorption cell. Publ. Astron. Soc. Pacif. 91, 540–545 (1979). This paper describes the use of absorption cells to perform high-precision Doppler measurement.

    Article  CAS  ADS  Google Scholar 

  11. Walker, G. A. H. in Complementary Approaches to Double and Multiple Star Research (eds McAlister, H. A. & Hartkopf, W. I.) 67 (ASP, 1992).

    Google Scholar 

  12. Vogt, S. S. et al. HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope. Proc. SPIE 2198, 362 (1994).

    Article  CAS  ADS  Google Scholar 

  13. Baranne, A. et al. ELODIE: a spectrograph for accurate radial velocity measurements. Astron. Astrophys. Suppl. Ser. 119, 373–390 (1996).

    Article  ADS  Google Scholar 

  14. Butler, R. P. et al. Attaining Doppler precision of 3 m s−1. Publ. Astron. Soc. Pacif. 108, 500 (1996).

    Article  ADS  Google Scholar 

  15. Mayor, M. & Udry, S. Mass function and distributions of the orbital elements of substellar companions. ASP Conf. Ser. 219, 441 (2000).

    ADS  Google Scholar 

  16. Santos, N. C. et al. The HARPS survey for southern extra-solar planets II. A 14 Earth-masses exoplanet around μ Arae. Astron. Astrophys. 426, L19–L23 (2004). The discovery of the first sub-Neptune-mass planet is reported in this paper.

    Article  ADS  Google Scholar 

  17. Mayor, M. et al. Setting new standards with HARPS. Messenger 114, 20–24 (2003).

    ADS  Google Scholar 

  18. Dumusque, X. et al. An Earth-mass planet orbiting α Centauri B. Nature 491, 207–211 (2012). This article describes the detection of the lowest-ever measure radial-velocity signal induced by a planetary companion.

    Article  CAS  ADS  PubMed  Google Scholar 

  19. Pepe, F. A. & Lovis, C. From HARPS to CODEX: exploring the limits of Doppler measurements. Phys. Scr. 130, 014007 (2008). This paper gives an overview of the limiting factors of Doppler velocimetry and how they may be overcome.

    Article  CAS  Google Scholar 

  20. Lovis, C., Mayor, M., Pepe, F., Queloz, D. & Udry, S. Pushing down the limits of RV precision with HARPS. Astron. Soc. Pacif. Conf. Ser. 398, 455 (2008).

    CAS  ADS  Google Scholar 

  21. Bouchy, F., Pepe, F. & Queloz, D. Fundamental photon noise limit to radial velocity measurements. Astron. Astrophys. 374, 733–739 (2001).

    Article  ADS  Google Scholar 

  22. Perruchot, S. et al. Higher-precision radial velocity measurements with the SOPHIE spectrograph using octagonal-section fibers. Proc. SPIE 8151, 815115 (2011).

    Article  Google Scholar 

  23. Chazelas, B. Study of optical fiber scrambling to improve radial velocity measurements: simulations and experiments. Available at http://exoplanets.astro.psu.edu/workshop/program.html (2010).

  24. Pepe, F., Mayor, M., Queloz, D. & Udry, S. Towards 1 ms-1 RV accuracy. Proc. IAU Symp. 202, 103 (2004).

    ADS  Google Scholar 

  25. Saar, S. H. & Fischer, D. Correcting radial velocities for long-term magnetic activity variations. Astrophys. J. 534, L105–L108 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  26. Santos, N. C. et al. The CORALIE survey for Southern extra-solar planets. IV. Intrinsic stellar limitations to planet searches with radial-velocity techniques. Astron. Astrophys. 361, 265–272 (2000).

    CAS  ADS  Google Scholar 

  27. Narayan, R., Cumming, A. & Lin, D. N. C. Radial velocity detectability of low-mass extrasolar planets in close orbits. Astrophys. J. 620, 1002–1009 (2005).

    Article  ADS  Google Scholar 

  28. Wright, J. T. Radial velocity jitter in stars from the California and Carnegie planet search at Keck observatory. Publ. Astron. Soc. Pacif. 117, 657–664 (2005).

    Article  ADS  Google Scholar 

  29. Reiners, A. Activity-induced radial velocity jitter in a flaring M dwarf. Astron. Astrophys. 498, 853–861 (2009).

    Article  CAS  ADS  Google Scholar 

  30. Lagrange, A. M., Meunier, N., Desort, M. & Malbet, F. Using the Sun to estimate Earth-like planets detection capabilities. III. Impact of spots and plages on astrometric detection. Astron. Astrophys. 528, L9 (2011).

    Article  ADS  Google Scholar 

  31. Martínez-Arnáiz, R., Maldonado, J., Montes, D., Eiroa, C. & Montesinos, B. Chromospheric activity and rotation of FGK stars in the solar vicinity. An estimation of the radial velocity jitter. Astron. Astrophys. 520, A79 (2010).

    Article  ADS  CAS  Google Scholar 

  32. Boisse, I. et al. Disentangling between stellar activity and planetary signals. Astron. Astrophys. 528, A4 (2011).

    Article  Google Scholar 

  33. Dumusque, X., Santos, N. C., Udry, S., Lovis, C. & Bonfils, X. Stellar noise and planet detection. in Proc. 276th IAU Symposium 527–529 (2011).

    Google Scholar 

  34. Dumusque, X., Lovis, C., Udry, S. & Santos, N. C. Stellar noise and planet detection. II. Radial-velocity noise induced by magnetic cycles. in Proc. 276th IAU Symposium 530–532 (2011).

    Google Scholar 

  35. Cegla, H. M. et al. Stellar jitter from variable gravitational redshift: implications for radial velocity confirmation of habitable exoplanets. Mon. Not. R. Astron. Soc. 421, L54–L58 (2012).

    Article  ADS  Google Scholar 

  36. Gettel, S. et al. Correcting Astrophysical Noise in HARPS-N RV Measurements. Available at http://www.mpia-hd.mpg.de/homes/ppvi/posters/2K024.html (2013).

    Google Scholar 

  37. Cegla, H. M., Stassun, K. G., Watson, C. A., Bastien, F. A. & Pepper, J. Estimating stellar radial velocity variability from Kepler and GALEX: implications for the radial velocity confirmation of exoplanets. Astrophys. J. 780, 104 (2014).

    Article  ADS  Google Scholar 

  38. Bastien, F. A. et al. Radial velocity variations of photometrically quiet, chromospherically inactive Kepler stars: a link between RV jitter and photometric flicker. Astron. J. 147, 29 (2014).

    Article  ADS  Google Scholar 

  39. Barnes, J. R. et al. Precision radial velocities of 15 M5–M9 dwarfs. Mon. Not. R. Astron. Soc. 439, 3094–3113 (2014).

    Article  CAS  ADS  Google Scholar 

  40. Pepe, F., Mayor, M. & Rupprecht, G. HARPS: ESO's coming planet searcher. Chasing exoplanets with the La Silla 3.6-m telescope. Messenger 110, 9–14 (2002).

    ADS  Google Scholar 

  41. Pasquini, L., Cristiani, S., Garcia-Lopez, R., Haehnelt, M. & Mayor, M. CODEX: an ultra-stable high resolution spectrograph for the E-ELT. Messenger 140, 20–21 (2010).

    ADS  Google Scholar 

  42. Pepe, F. et al. ESPRESSO: the next European exoplanet hunter. Astron. Nachr. 335, 8 (2014).

    Article  CAS  ADS  Google Scholar 

  43. Szentgyorgyi, A. et al. The GMT-CfA, Carnegie, Catolica, Chicago Large Earth Finder (G-CLEF): a general purpose optical echelle spectrograph for the GMT with precision radial velocity capability. Proc. SPIE 8446, 84461H (2012).

    Article  Google Scholar 

  44. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Habitable zones around main sequence stars. Icarus 101, 108 (1993). This paper provides a definition for the habitable zone.

    Article  CAS  ADS  PubMed  Google Scholar 

  45. Heacox, W. D. in Fiber Optics in Astronomy (ed. Barden, S. C.) 204–235 (Astron. Soc. Pacif., 1988)

    Google Scholar 

  46. Hubbard, E. N., Angel, J. R. P. & Gresham, M. S. Operation of a long fused silica fiber as a link between telescope and spectrograph. Astrophys. J. 229, 1074–1078 (1979).

    Article  CAS  ADS  Google Scholar 

  47. Barden, S. C., Ramsey, L. W. & Truax, R. J. Evaluation of some fiber optical waveguides for astronomical instrumentation. Publ. Astron. Soc. Pacif. 93, 154–162 (1981).

    Article  ADS  Google Scholar 

  48. Heacox, W. D. & Connes, P. Optical fibers in astronomical instruments. Astron. Astrophys. 3, 169–199 (1992). This paper contains a complete and detailed discussion of instrumental effects and in particular the use of optical fibres for image scrabbling.

    ADS  Google Scholar 

  49. Hunter, T. R. & Ramsey, L. W. Scrambling properties of optical fibers and the performance of a double scrambler. Publ. Astron. Soc. Pacif. 104, 1244–1251 (1992).

    Article  ADS  Google Scholar 

  50. Avila, G., Buzzoni, B. & Casse, M. Fiber characterization and compact scramblers at ESO. Proc. SPIE 3355, 900–904 (1998).

    Article  ADS  Google Scholar 

  51. Avila, G. & Singh, P. Optical fiber scrambling and light pipes for high accuracy radial velocities measurements. Proc. SPIE 7018, 70184W (2008).

    Article  ADS  Google Scholar 

  52. Chazelas, B., Pepe, F. & Wildi, F. Optical fibers for precise radial velocities: an update. Proc. SPIE 8450, 845013 (2012).

    Article  Google Scholar 

  53. Plavchan, P. P. et al. Precision near-infrared radial velocity instrumentation II: noncircular core fiber scrambler. Proc. SPIE 8864, 88640G (2013).

    Article  Google Scholar 

  54. Cosentino, R. et al. Harps-N: the new planet hunter at TNG. Proc. SPIE 8446, 84461V (2012).

    Article  Google Scholar 

  55. Bouchy, F. et al. SOPHIE+: first results of an octagonal-section fiber for high-precision radial velocity measurements. Astron. Astrophys. 549, 49 (2013).

    Article  Google Scholar 

  56. Mahadevan, S. & Ge, J. The use of absorption cells as a wavelength reference for precision radial velocity measurements in the near-infrared. Astrophys. J. 692, 1590–1596 (2009).

    Article  CAS  ADS  Google Scholar 

  57. Osterman, S. et al. A proposed laser frequency comb-based wavelength reference for high-resolution spectroscopy. Proc. SPIE 6693, 66931G (2007).

    Article  Google Scholar 

  58. Li, C.-H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1cm s−1. Nature 452, 610–612 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  59. Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 321, 1335–1337 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  60. Schettino, G. et al. The Astro-Comb project. Proc. SPIE 7808, 78081Q (2010).

    Article  Google Scholar 

  61. Phillips, D. F. et al. Calibration of an echelle spectrograph with an astro-comb: a laser frequency comb with very high repetition rate. Proc. SPIE 8446, 84468O (2012).

    Article  Google Scholar 

  62. Johnson, A. R. et al. Microresonator-based comb generation without an external laser source. Opt. Express 22, 1394 (2014).

    Article  CAS  ADS  PubMed  Google Scholar 

  63. Wildi, F., Pepe, F. & Chazelas, B. Curto, Lo, G. & Lovis, C. The performance of the new Fabry-Perot calibration system of the radial velocity spectrograph HARPS. Proc. SPIE 8151, 81511F (2011).

    Article  ADS  Google Scholar 

  64. Schäfer, S. & Reiners, A. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared. Proc. SPIE 8446, 844694 (2012).

    Article  Google Scholar 

  65. Halverson, S. et al. Development of fiber Fabry-Perot interferometers as stable near-infrared calibration sources for high resolution spectrographs. Publ. Astron. Soc. Pacif. 126, 445–458 (2014).

    Article  ADS  Google Scholar 

  66. Schwab, C. et al. Stabilizing a Fabry-Perot etalon to 3 cm/s for spectrograph calibration. Preprint at http://arxiv.org/abs/1404.0004 (2014).

  67. Reiners, A. et al. Detecting planets around very low mass stars with the radial velocity method. Astrophys. J. 710, 432–443 (2010).

    Article  ADS  Google Scholar 

  68. Desort, M., Lagrange, A. M., Galland, F., Udry, S. & Mayor, M. Search for exoplanets with the radial-velocity technique: quantitative diagnostics of stellar activity. Astron. Astrophys. 473, 983–993 (2007).

    Article  ADS  Google Scholar 

  69. Huélamo, N. et al. TW Hydrae: evidence of stellar spots instead of a hot Jupiter. Astron. Astrophys. 489, L9–L13 (2008).

    Article  ADS  CAS  Google Scholar 

  70. Barnes, J. R., Jeffers, S. V. & Jones, H. R. A. The effect of M dwarf starspot activity on low-mass planet detection thresholds. Mon. Not. R. Astron. Soc. 412, 1599–1610 (2011).

    Article  ADS  Google Scholar 

  71. Oliva, E. et al. The GIANO spectrometer: towards its first light at the TNG. Proc. SPIE 8446, 84463T (2012).

    Article  Google Scholar 

  72. Quirrenbach, A. et al. CARMENES. I: instrument and survey overview. Proc. SPIE 8446, 84460R (2012).

    Article  Google Scholar 

  73. Tamura, M. et al. Infrared Doppler instrument for the Subaru Telescope (IRD). Proc. SPIE 8446, 84461T (2012).

    Article  Google Scholar 

  74. Mahadevan, S. et al. The habitable-zone planet finder: a stabilized fiber-fed NIR spectrograph for the Hobby-Eberly Telescope. Proc. SPIE 8446, 84461S (2012).

    Article  Google Scholar 

  75. Ge, J. et al. High resolution Florida IR silicon immersion grating spectrometer and an M dwarf planet survey. Proc. SPIE 8446, 84463O (2012).

    Article  Google Scholar 

  76. Delfosse, X. et al. World-leading science with SPIRou – the nIR spectropolarimeter/high-precision velocimeter for CFHT. Proc. SF2A 497–508 (2013).

  77. Schwab, C., Leon-Saval, S. G., Betters, C. H., Bland-Hawthorn, J. & Mahadevan, S. Single mode, extreme precision Doppler spectrographs. IAU Proc. Preprint at http://arxiv.org/abs/1212.4867 (2012).

  78. Wright, J. T. et al. The frequency of hot Jupiters orbiting nearby solar-type stars. Astrophys. J. 753, 160 (2012).

    Article  ADS  CAS  Google Scholar 

  79. Collier Cameron, A. et al. WASP-1b and WASP-2b: two new transiting exoplanets detected with SuperWASP and SOPHIE. Mon. Not. R. Astron. Soc. 375, 951–957 (2007)

    Article  ADS  Google Scholar 

  80. Bakos, G. Á. et al. HAT-P-1b: a large-radius, low-density exoplanet transiting one member of a stellar binary. Astrophys. J. 656, 552–559 (2007).

    Article  ADS  Google Scholar 

  81. Alonso, R. et al. TrES-1: the transiting planet of a bright K0 V star. Astrophys. J. 613, L153 (2004).

    Article  CAS  ADS  Google Scholar 

  82. Udalski, A. et al. The optical gravitational lensing experiment. Search for planetary and low-luminosity object transits in the galactic disk. Results of 2001 Campaign — Supplement. Acta Astron. 52, 115–128 (2002).

    ADS  Google Scholar 

  83. Konacki, M., Torres, G., Jha, S. & Sasselov, D. D. An extrasolar planet that transits the disk of its parent star. Nature 421, 507–509 (2003). This paper reports the first discovery of an exoplanet with a ground-based transit survey.

    Article  CAS  ADS  PubMed  Google Scholar 

  84. Moutou, C. et al. CoRoT: harvest of the exoplanet program. Icarus 226, 1625–1634 (2013).

    Article  ADS  Google Scholar 

  85. Charbonneau, D., Irwin, J., Nutzman, P. & Falco, E. E. The MEarth project to detect habitable super Earth exoplanets. Bull. Am. Astron. Soc. 40, 242 (2008).

    ADS  Google Scholar 

  86. Charbonneau, D. et al. A super-Earth transiting a nearby low-mass star. Nature 462, 891–894 (2009).

    Article  CAS  ADS  PubMed  Google Scholar 

  87. Bean, J. L., Miller-Ricci Kempton, E. M.-R. & Homeier, D. A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b. Nature 468, 669–672 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  88. Croll, B. et al. Broadband transmission spectroscopy of the super-Earth GJ 1214b suggests a low mean molecular weight atmosphere. Astrophys. J. 736, 78 (2011).

    Article  ADS  CAS  Google Scholar 

  89. Crossfield, I. J. M., Barman, T. & Hansen, B. M. S. High-resolution, differential, near-infrared transmission spectroscopy of GJ 1214b. Astrophys. J. 736, 132 (2011).

    Article  ADS  CAS  Google Scholar 

  90. Kreidberg, L., Bean, J. L., Désert, J.-M. & Benneke, B. Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b. Nature 505, 69–72 (2014). This paper presents a high-precision medium-resolution transmission spectrum of a super-Earth.

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Désert, J.-M. et al. Observational evidence for a metal rich atmosphere on the super-Earth GJ1214b. Astrophys. Lett. 731, L40 (2011).

    Article  ADS  CAS  Google Scholar 

  92. Charbonneau, D., Brown, T. M., Latham, D. W. & Mayor, M. Detection of planetary transits across a Sun-like star. Astrophys. J. 529, L45 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  93. Henry, G. W., Marcy, G. W., Butler, R. P. & Vogt, S. S. A. Transiting 51 Peg-like planet. Astrophys. J. 529, L41 (2000).

    Article  CAS  ADS  PubMed  Google Scholar 

  94. Brown, T. M., Charbonneau, D., Gilliland, R. L., Noyes, R. W. & Burrows, A. Hubble space telescope time-series photometry of the transiting planet of HD 209458. Astrophys. J. 552, 699 (2001). This paper reports on the first observation of an exoplanet transit from space, with the Hubble Space Telescope.

    Article  ADS  Google Scholar 

  95. Woodgate, B. E. et al. The space telescope imaging spectrograph design. Publ. Astron. Soc. Pacif. 110, 1183 (1998).

    Article  ADS  Google Scholar 

  96. Charbonneau, D., Brown, T. M., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377 (2002).

    Article  CAS  ADS  Google Scholar 

  97. Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD 209458b. Nature 422, 143–146 (2003).

    Article  CAS  ADS  PubMed  Google Scholar 

  98. Pont, F. et al. Hubble Space Telescope time-series photometry of the planetary transit of HD 189733: no moon, no rings, starspots. Astron. Astrophys. 476, 1347 (2007).

    Article  ADS  Google Scholar 

  99. Fazio, G. G. et al. The Infrared Array Camera (IRAC) for the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 10 (2004).

    Article  ADS  Google Scholar 

  100. Charbonneau, D. et al. Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523 (2005).

    Article  CAS  ADS  Google Scholar 

  101. Deming, D., Seager, S., Richardson, L. J. & Harrington, J. Infrared radiation from an extrasolar planet. Nature 434, 740–743 (2005).

    Article  CAS  ADS  PubMed  Google Scholar 

  102. Knutson, H. A. et al. A map of the day–night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007).

    Article  CAS  ADS  PubMed  Google Scholar 

  103. Richardson, L. J., Harrington, J., Seager, S. & Deming, D. A Spitzer infrared radius for the transiting extrasolar planet HD 209458b. Astrophys. J. 649, 1043 (2006).

    Article  CAS  ADS  Google Scholar 

  104. Ehrenreich, D. et al. A Spitzer search for water in the transiting exoplanet HD 189733b. Astrophys. J. 668, L179 (2007).

    Article  CAS  ADS  Google Scholar 

  105. Beaulieu, J. P., Carey, S., Ribas, I. & Tinetti, G. Primary transit of the planet HD 189733b at 3.6 and 5.8 μm. Astrophys. J. 677, 1343 (2008).

    Article  ADS  Google Scholar 

  106. Désert, J.-M. et al. Search for carbon monoxide in the atmosphere of the transiting exoplanet HD 189733b. Astrophys. J. 699, 478 (2009).

    Article  ADS  CAS  Google Scholar 

  107. Thompson, R. I. NICMOS: the next U.S. infrared space mission. Proc. SPIE 2198, 1202–1213 (1994).

    Article  ADS  Google Scholar 

  108. Swain, M. R., Vasisht, G. & Tinetti, G. The presence of methane in the atmosphere of an extrasolar planet. Nature 452, 329 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  109. Sing, D. K. et al. Transit spectrophotometry of the exoplanet HD 189733b. I. Searching for water but finding haze with HST NICMOS. Astron. Astrophys. 505, 891–899 (2009).

    Article  CAS  ADS  Google Scholar 

  110. Gibson, N. P., Pont, F. & Aigrain, S. A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features. Mon. Not. R. Astron. Soc. 411, 2199 (2011). This paper explores the impact of instrumental systematics in transmission spectroscopy, which can lead to false-positive detections.

    Article  CAS  ADS  Google Scholar 

  111. Houck, J. R. et al. The Infrared Spectrograph (IRS) on the Spitzer Space Telescope. Astrophys. J. Suppl. Ser. 154, 18–24 (2004).

    Article  ADS  Google Scholar 

  112. Grillmair, C. J. et al. A Spitzer spectrum of the exoplanet HD 189733b. Astrophys. J. 658, L115 (2007).

    Article  ADS  Google Scholar 

  113. Grillmair, C. J. et al. Strong water absorption in the dayside emission spectrum of the planet HD 189733b. Nature 456, 767–769 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  114. Demory, B.-O. et al. Detection of a transit of the super-Earth 55 Cancri e with warm Spitzer. Astron. Astrophys. 533, 114 (2011).

    Article  Google Scholar 

  115. Van Grootel, V. et al. Transit confirmation and improved stellar and planet parameters for the super-Earth HD 97658 b and its host star. Astrophys. J. 796, 2 (2014).

    Article  ADS  CAS  Google Scholar 

  116. Snellen, I. A. G., Albrecht, S., de Mooij, E. J. W. & Le Poole, R. S. Ground-based detection of sodium in the transmission spectrum of exoplanet HD 209458b. Astron. Astrophys. 487, 357 (2008). This paper reports the first detection of an exoplanetary atmosphere from the ground, with a high-resolution spectrograph installed at the Subaru telescope.

    Article  CAS  ADS  Google Scholar 

  117. Narita, N. et al. Subaru HDS transmission spectroscopy of the transiting extrasolar planet HD 209458b. Publ. Astron. Soc. Jpn 57, 471 (2005).

    Article  CAS  ADS  Google Scholar 

  118. Sing, D. K. et al. Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry. Astron. Astrophys. 527, 73 (2011).

    Article  CAS  Google Scholar 

  119. Colon, K. D. et al. Measuring potassium in exoplanet atmospheres with the OSIRIS tunable filter. RevMexAA (Serie de Conferencias) 42, 1–2 (2013).

    CAS  Google Scholar 

  120. Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD209458b. Nature 465, 1049–1051 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  121. Birkby, J. L. et al. Detection of water absorption in the dayside atmosphere of HD 189733 b using ground-based high-resolution spectroscopy at 3.2 microns. Mon. Not. R. Astron. Soc. 436, L35 (2013).

    Article  CAS  ADS  Google Scholar 

  122. Lockwood, A. C., Johnson, J. A. & Bender, C. F. Near-IR direct detection of water vapor in τ Boötis b. Astrophys. Lett. 783, L29 (2014).

    Article  ADS  CAS  Google Scholar 

  123. Brogi, M. et al. The signature of orbital motion from the dayside of the planet τ Boötis b. Nature 486, 502–504 (2012).

    Article  CAS  ADS  PubMed  Google Scholar 

  124. Lagrange, A.-M. et al. A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L'-band imaging. Astron. Astrophys. 493, L21 (2009). This paper reports the near-infrared detection of the giant exoplanet β Pictoris b from adaptive-optics high-contrast observations with the NACO instrument on the VLT.

    Article  ADS  Google Scholar 

  125. Snellen, I. et al. The fast spin-rotation of the young extrasolar planet β Pictoris b. Nature 509, 63–65 (2014). This paper details how ground-based, high-resolution spectroscopy can be used to probe the atmosphere of a directly imaged exoplanet and measure its spin-rotation.

    Article  CAS  ADS  PubMed  Google Scholar 

  126. Green, J. C. Cosmic origins spectrograph. Proc. SPIE 4498, 229–238 (2001).

    Article  ADS  Google Scholar 

  127. Kimble, R. A., MacKenty, J. W., O'Connell, R. W. & Townsend, J. A. Wide Field Camera 3: a powerful new imager for the Hubble Space Telescope. Proc. SPIE 7010, 70101E (2008).

    Article  ADS  Google Scholar 

  128. Linsky, J. L. et al. Observations of mass loss from the transiting exoplanet HD 209458b. Astrophys. J. 717, 1291 (2010).

    Article  CAS  ADS  Google Scholar 

  129. Lecavelier des Etangs, A. et al. Temporal variations in the evaporating atmosphere of the exoplanet HD 189733b. Astron. Astrophys. 543, L4 (2012).

    Article  ADS  CAS  Google Scholar 

  130. Bourrier, V. et al. Atmospheric escape from HD 189733b observed in HI Lyman-α: detailed analysis of HST/STIS September 2011 observations. Astron. Astrophys. 551, A63 (2013).

    Article  CAS  Google Scholar 

  131. Ehrenreich, D. et al. Hint of a transiting extended atmosphere on 55 Cancri b. Astron. Astrophys. 547, 18 (2012).

    Article  CAS  Google Scholar 

  132. Fossati, L. et al. Metals in the exosphere of the highly irradiated planet WASP-12b. Astrophys. Lett. 714, L222 (2010).

    Article  CAS  ADS  Google Scholar 

  133. Kulow, J. R., France, K., Linsky, J. & Loyd, R. O. P. Lyα Transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Astrophys. J. 786, 132 (2014).

    Article  ADS  CAS  Google Scholar 

  134. Huitson, C. M., Sing, D. K., Vidal-Madjar, A., Ballester, G. E. & Lecavelier des Etangs, A. Temperature-pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating. Mon. Not. R. Astron. Soc. 422, 2477 (2012).

    Article  CAS  ADS  Google Scholar 

  135. Evans, T. M. et al. The deep blue color of HD 189733b: albedo measurements with Hubble Space Telescope/Space Telescope imaging spectrograph at visible wavelengths. Astrophys. Lett. 772, L16 (2013).

    Article  ADS  CAS  Google Scholar 

  136. Berta, Z. K. et al. The flat transmission spectrum of the super-Earth GJ1214b from Wide Field Camera 3 on the Hubble Space Telescope. Astrophys. J. 747, 35 (2012).

    Article  ADS  Google Scholar 

  137. Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95 (2013).

    Article  ADS  CAS  Google Scholar 

  138. Mandell, A. et al. Exoplanet transit spectroscopy using WFC3: WASP-12 b, WASP-17 b, and WASP-19 b. Astrophys. J. 779, 128 (2013).

    Article  ADS  CAS  Google Scholar 

  139. Knutson, H. A., Benneke, B., Deming, D. & Homeier, D. A featureless transmission spectrum for the Neptune-mass exoplanet GJ 436b. Nature 505, 66–68 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  140. Ranjan, S. et al. Atmospheric characterization of 5 hot Jupiters with Wide Field Camera 3 on the Hubble Space Telescope. Astrophys. J. 785, 148 (2014).

    Article  ADS  Google Scholar 

  141. Gibson, N. P. et al. Probing the haze in the atmosphere of HD 189733b with HST/WFC3 transmission spectroscopy. Mon. Not. R. Astron. Soc. 422, 753 (2012).

    Article  ADS  Google Scholar 

  142. Knutson, H. A. et al. Hubble Space Telescope near-IR transmission spectroscopy of the super-Earth HD 97658b. Preprint at http://arxiv.org/abs/1403.4602 (2014).

  143. Ehrenreich, D. et al. Near-infrared transmission spectrum of the warm-Uranus GJ 3470b with the Wide Field Camera-3 on the Hubble Space Telescope. Preprint at http://arxiv.org/abs/1405.1056 (2014).

  144. Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008). This paper reports on the discovery of three planetary companions, directly imaged in the near-infrared at two different epochs with the adaptive-optics systems at the Gemini and Keck telescopes, and the corresponding facility near-infrared cameras.

    Article  CAS  ADS  PubMed  Google Scholar 

  145. Kalas, P. et al. Optical images of an exosolar planet 25 light-years from Earth. Science 322, 1345–1348 (2008).

    Article  CAS  ADS  PubMed  Google Scholar 

  146. Kalas, P., Graham, J. R., Fitzgerald, M. P. & Clampin, M. HST/STIS imaging of Fomalhaut: new main belt structure and confirmation of Fomalhaut b's eccentric orbit. Proc. IAU 8, 204–207 (2014).

    Article  ADS  CAS  Google Scholar 

  147. Lagrange, A.-M. et al. Constraining the orbit of the possible companion to β Pictoris. New deep imaging observations. Astron. Astrophys. 506, 927 (2009).

    Article  ADS  Google Scholar 

  148. Lagrange, A.-M. et al. A giant planet imaged in the disk of the young star β Pictoris. Science 329, 57 (2010).

    Article  CAS  ADS  PubMed  Google Scholar 

  149. Quanz, S. P. et al. First results from Very Large Telescope NACO apodizing phase plate: 4 μm images of the exoplanet β Pictoris b. Astrophys. Lett. 722, L49 (2010).

    Article  ADS  Google Scholar 

  150. Smith, B. A. & Terrile, R. J. A circumstellar disk around β Pictoris. Science 226, 1421–1424 (1984).

    Article  CAS  ADS  PubMed  Google Scholar 

  151. Chauvin, G. et al. A giant planet candidate near a young brown dwarf. Astron. Astrophys. 425, L29–L32 (2004). This paper reports the first direct detection of a planetary-mass object, orbiting a brown dwarf, with the NACO instrument on the VLT.

    Article  CAS  ADS  Google Scholar 

  152. Chabrier, G., Johansen, A., Janson, M. & Rafikov, R. Giant planet and brown dwarf formation. Preprint at http://arxiv.org/abs/1401.7559 (2014).

  153. Davies, R. & Kasper, M. Adaptive optics for astronomy. Annu. Rev. Astron. Astrophys. 50, 305–351 (2012).

    Article  CAS  ADS  Google Scholar 

  154. Nielsen, E. L. & Close, L. M. A uniform analysis of 118 stars with high-contrast imaging: long-period extrasolar giant planets are rare around Sun-like stars. Astrophys. J. 717, 878–896 (2010).

    Article  ADS  Google Scholar 

  155. Fusco, T. et al. Integration of SAXO, the VLT-SPHERE extreme AO: final performance. Proc. Third AO4ELT Conf. http://dx.doi.org/10.12839/AO4ELT3.13327 (2013).

  156. Macintosh, B. et al. The Gemini Planet Imager: first light. Proc. Natl Acad. Sci. USA. Preprint at http://arxiv.org/abs/1403.7520 (2014).

  157. Close, L. et al. Into the blue: AO science in the visible with MagAO. Proc. Third AO4ELT Conf. http://dx.doi.org/10.12839/AO4ELT3.13387 (2013).

  158. Marois, C., Lafrenière, D., Doyon, R., Macintosh, B. & Nadeau, D. Angular differential imaging: a powerful high-contrast imaging technique. Astrophys. J. 641, 556 (2006).

    Article  ADS  Google Scholar 

  159. Amara, A. & Quanz, S. P. PYNPOINT: an image processing package for finding exoplanets. Mon. Not. R. Astron. Soc. 427, 948–955 (2012).

    Article  ADS  Google Scholar 

  160. Quanz, S. P. et al. Resolving the inner regions of circumstellar discs with VLT/NACO polarimetric differential imaging. Messenger 146, 25–27 (2011).

    ADS  Google Scholar 

  161. Milli, J. et al. Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL. Astron. Astrophys. 556, 64 (2013).

    Article  Google Scholar 

  162. Crepp, J. R. et al. Speckle suppression with the Project 1640 Integral Field Spectrograph. Astrophys. J. 729, 132 (2011).

    Article  ADS  Google Scholar 

  163. Ireland, M. J. Phase errors in diffraction-limited imaging: contrast limits for sparse aperture masking. Mon. Not. R. Astron. Soc. 433, 1718–1728 (2013).

    Article  ADS  Google Scholar 

  164. Kenworthy, M. A. et al. First on-sky high-contrast imaging with an apodizing phase plate. Astrophys. J. 660, 762–769 (2007).

    Article  ADS  Google Scholar 

  165. Mawet, D. et al. L'-band AGPM vector vortex coronagraph's first light on VLT/NACO. Discovery of a late-type companion at two beamwidths from an F0V star. Astron. Astrophys. 552, L13 (2013).

    Article  ADS  Google Scholar 

  166. Guyon, O. Phase-induced amplitude apodization of telescope pupils for extrasolar terrestrial planet imaging. Astron. Astrophys. 404, 379–387 (2003).

    Article  ADS  Google Scholar 

  167. Mawet, D. et al. Review of small-angle coronagraphic techniques in the wake of ground-based second-generation adaptive optics systems. Proc. SPIE 8442, 844204 (2012).

    Article  Google Scholar 

  168. Bailey, V. et al. The large binocular telescope interferometer and adaptive optics system: on-sky performance and results. Proc. IAU 8, 26–27 (2014).

    Article  ADS  Google Scholar 

  169. Codona, J. L. & Kenworthy, M. Focal plane wavefront sensing using residual adaptive optics speckles. Astrophys. J. 767, 100 (2013).

    Article  ADS  Google Scholar 

  170. Quanz, S. P., Crossfield, I., Meyer, M. R., Schmalzl, E. & Held, J. Direct detection of exoplanets in the 3–10 micron range with E-ELT/METIS. Int. J. Astrobiol. Preprint at http://arxiv.org/abs/1404.0831 (2014).

  171. Sozzetti, A. et al. Astrometric detection of giant planets around nearby M dwarfs: the Gaia potential. Mon. Not. R. Astron. Soc. 437, 497–509 (2014).

    Article  ADS  Google Scholar 

  172. Sahlmann, J. et al. Narrow-angle astrometry with PRIMA. Proc. SPIE 8445, 84450S1 (2012).

    Article  Google Scholar 

  173. Howell, S. B. et al. The K2 mission: characterization and early results. Publ. Astron. Soc. Pacif. Preprint at http://arxiv.org/abs/1402.5163 (2014).

  174. Ricker, G. R. et al. The Transiting Exoplanet Survey Satellite (TESS). Bull. Am. Astron. Soc. 41, 193 (2009).

    ADS  Google Scholar 

  175. Rauer, H. et al. The PLATO 2.0 mission. Exp. Astron. Preprint at http://arxiv.org/abs/1310.0696 (2013).

  176. Snellen, I. et al. Ground-based search for the brightest transiting planets with Multi-site All Sky Camera - MASCARA. Proc. SPIE 8444, 844401 (2012)

    Google Scholar 

  177. CHEOPS Study Team. CHEOPS Definition Study Report (Red Book) (ESA, 2013).

  178. Broeg, C. et al. CHEOPS: A transit photometry mission for ESA's small mission programme. EPJ Web Conf. 47, 03005 (2013).

    Article  Google Scholar 

  179. Snellen, I. A. G., de Kok, R. J., le Poole, R., Brogi, M. & Birkby, J. Finding extraterrestrial life using ground-based high-dispersion spectroscopy. Astrophys. J. 764, 182 (2013).

    Article  ADS  CAS  Google Scholar 

  180. Vogt, S. S. The Lick Observatory Hamilton Echelle Spectrometer. Publ. Astron. Soc. Pacif. 99, 1214–1228 (1987).

    Article  CAS  ADS  Google Scholar 

  181. Horton, A. et al. CYCLOPS2: the fibre image slicer upgrade for the UCLES high resolution spectrograph. Proc. SPIE 8446, 84463A (2012).

    Article  Google Scholar 

  182. Dekker, H., D'Odorico, S., Kaufer, A., Delabre, B. & Kotzlowski, H. Design, construction, and performance of UVES, the echelle spectrograph for the UT2 Kueyen Telescope at the ESO Paranal Observatory. Proc. SPIE 4008, 534 (2000).

    Article  ADS  Google Scholar 

  183. Tull, R. G. High-resolution fiber-coupled spectrograph of the Hobby-Eberly Telescope. Proc. SPIE 3355, 387 (1998).

    Article  ADS  Google Scholar 

  184. Noguchi, K. et al. High Dispersion Spectrograph (HDS) for the Subaru Telescope. Publ. Astron. Soc. Jpn. 54, 855–864 (2002).

    Article  ADS  Google Scholar 

  185. Kaufer, A. et al. Commissioning FEROS, the new high-resolution spectrograph at La-Silla. Messenger 95, 8–12 (1999).

    ADS  Google Scholar 

  186. Bernstein, R., Shectman, S. A., Gunnels, S. M., Mochnacki, S. & Athey, A. E. MIKE: a Double Echelle Spectrograph for the Magellan Telescopes at Las Campanas Observatory. Proc. SPIE 4841, 1694 (2003).

    Article  ADS  Google Scholar 

  187. Bouchy, F. & Team, S. in Proc. Colloquium of the Tenth Anniversary of 51 Peg-b 319–325 http://www.obs-hp.fr/www/pubs/Coll51Peg/proceedings.html (2006).

    Google Scholar 

  188. Kaeufl, H.-U. et al. CRIRES: a high-resolution infrared spectrograph for ESO's VLT. Proc. SPIE 5492, 1218 (2004).

    Article  ADS  Google Scholar 

  189. Crane, J. D. et al. The Carnegie Planet Finder Spectrograph: integration and commissioning. Proc. SPIE 7735, 773553 (2010).

    Article  Google Scholar 

  190. Chakraborty, A. et al. First light results from PARAS: the PRL Echelle Spectrograph. Proc. SPIE 7735, 77354N (2010).

    Article  Google Scholar 

  191. Aceituno, J. et al. CAFE: Calar Alto Fiber-fed Échelle spectrograph. Astron. Astrophys. 552, 31 (2013).

    Article  Google Scholar 

  192. Schwab, C., Spronck, J. F. P., Tokovinin, A. & Fischer, D. A. Design of the CHIRON high-resolution spectrometer at CTIO. Proc. SPIE 7735, 77354G (2010).

    Article  ADS  Google Scholar 

  193. Vogt, S. S. et al. APF - The Lick Observatory Automated Planet Finder. Publ. Astron. Soc. Pacif. Preprint at http://arxiv.org/abs/1402.6684 (2014).

  194. Ge, J. et al. Design and performance of a new generation, compact, low cost, very high Doppler precision and resolution optical spectrograph. Proc. SPIE 8446, 84468R (2012).

    Article  Google Scholar 

  195. Bramall, D. G. et al. The SALT HRS spectrograph: instrument integration and laboratory test results. Proc. SPIE 8446, 84460A (2012).

    Article  Google Scholar 

  196. Strassmeier, K. G. et al. PEPSI: the Potsdam Echelle Polarimetric and Spectroscopic Instrument for the LBT. Proc. SPIE 7014, 70140N (2008).

    Article  Google Scholar 

  197. Brown, T. M., Noyes, R. W., Nisenson, P., Korzennik, S. G. & Horner, S. The AFOE: a spectrograph for precise Doppler studies. Publ. Astron. Soc. Pacif. 106, 1285–1297 (1994).

    Article  ADS  Google Scholar 

  198. Tull, R. G., MacQueen, P. J., Sneden, C. & Lambert, D. L. The high-resolution cross-dispersed echelle white-pupil spectrometer of the McDonald Observatory 2.7-m telescope. Publ. Astron. Soc. Pacif. 107, 251–264 (1995).

    Article  ADS  Google Scholar 

  199. Schneider, J., Dedieu, C., Le Sidaner, P., Savalle, R. & Zolotukhin, I. Defining and cataloging exoplanets: the exoplanet.eu database. Astron. Astrophys. 532, A79 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D.E. would like to dedicate this article to the memory of STIS Principal Investigator Bruce Woodgate who passed away in April 2014. This work has been carried out within the frame of the National Centre for Competence in Research 'PlanetS' supported by the Swiss National Science Foundation (SNSF). The authors acknowledge the financial support of the SNSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Pepe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepe, F., Ehrenreich, D. & Meyer, M. Instrumentation for the detection and characterization of exoplanets. Nature 513, 358–366 (2014). https://doi.org/10.1038/nature13784

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13784

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing